medium carbon
Recently Published Documents


TOTAL DOCUMENTS

1794
(FIVE YEARS 450)

H-INDEX

48
(FIVE YEARS 8)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 585
Author(s):  
Marcel Kuruc ◽  
Tomáš Vopát ◽  
Jozef Peterka ◽  
Martin Necpal ◽  
Vladimír Šimna ◽  
...  

The paper deals with the issue of cutting zone and chip compression. The aim was to analyse the microstructure transverse section of the cutting zone on a metallographic cut, due to determined values of chip compression and plastic deformation, which affect the cutting process efficiency. The tested cutting tool material was coated with cemented carbide. The selected workpiece materials were C45 medium carbon steel of ISO grade and 62SiMnCr4 tool steel of ISO (W.Nr. 1.2101) grade. In the experiments, a DMG CTX alpha 500 turning centre was used. The cutting speed and feed were varied, and the depth of the cut was kept constant during the turning. The plastic deformation and chip compression determine the efficiency of the cutting process. The higher compression requires more work to perform the process and, therefore, it requires more energy for doing so. With the increase of the cutting speed, the deformation for C45 steel is decreased. The rapid deformation reduction was observed when the cutting speed was increased from 145 m/min to 180 m/min. Generally, deformation is decreasing with the increase of the feed. Only at a cutting speed of 145 m/min was the deformation elevation observed, when the feed was increased from 0.4 mm to 0.6 mm. During the turning of the 62SiMnCr4 tool steel we observed an error value at a cutting speed of 145 m/min and a feed of 0.4 mm was the middle cutting parameter. However, feed dependence was clear: With an increase of the feed, the plastic deformation was decreasing. This decreasing was more rapid with the increasing of the cutting speed. Besides plastic deformation, there was analysed chip compression as well. With the increasing of the cutting speed, there was a decrease of the chip compression. Due to a lack of information in the area of the chip compression and the plastic deformation in the cutting process, we decided to investigate the cutting zone for the turning of tool steels 62SiMnCr4, which was compared with the reference steel C45. The results could be applied to increase the efficiency of the process and improvement of the surface integrity.


2022 ◽  
Vol 9 ◽  
Author(s):  
Shuangchang Cui

Industrial enterprises are the core subjects to reduce carbon emissions. Their innovations for low-carbon production are the key to determine the effect of carbon emission reduction. This paper examines the impact of executive experience, especially the overseas experience, on enterprise innovations across 3559 enterprises in low-carbon, medium-carbon and high-carbon industries respectively. Interestingly, it shows that the executive experience has only played a significant role in enterprise innovations of high-carbon industrial enterprises, indicating that the executive’s international vision might help to promote innovation in high-carbon industry. Then, it’s also discovered that there is a mediating effect of international strategy which helps to better understand the impact mechanism of executive experience on enterprise innovation in high-carbon industry.


2022 ◽  
Vol 73 ◽  
pp. 463-470
Author(s):  
Philipp Hoier ◽  
Bahman Azarhoushang ◽  
Per Lundin ◽  
Amir Malakizadi ◽  
Jeffrey Badger ◽  
...  

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Qiuyang Yu ◽  
Xiaogang Yang ◽  
Chaobin Lai ◽  
Zhifang Tong

Precipitation of MnS inclusions in steel affects the mechanical properties of the material significantly. The evolution of MnS inclusions along the continuous casting slab thickness and its influencing factors has not been clearly established and comprehensively studied. In this paper, solidification macrostructure, sulfur segregation and MnS inclusions in the continuous casting slab of medium carbon structural steel 45# were studied by various methods, including the metallographic observations, elemental analysis, scanning electron microscope (SEM) with Energy Dispersive Spectrometer (EDS) observation, automatic particle analysis, and thermodynamic calculations. The 2D/3D morphologies of MnS inclusions suggest that the sulfides turn from globular to rodlike, and further to dendritic shape along the slab thickness progressively. Furthermore, it was found that MnS inclusions are remarkably aggregated in the columnar crystals and the equiaxed crystals mixed zone, where the sulfides have the largest average diameter of 6.35 μm and the second maximum area fraction of 0.025% along the slab thickness. In order to reveal the mechanism of this phenomenon, the precipitation temperature of MnS inclusion in the 45# steel was clarified by thermodynamic calculation and experimental observation, and the quantitative relationships among the distribution of sulfur content, secondary dendrite arm spacing (SDAS), and precipitation area fraction of MnS inclusions were discussed. Moreover, the inclusion size was numerically predicted to compare with the measured value. The results indicate that the large SDAS, high sulfur content and low cooling rate accounting for the large-size aggregated MnS inclusions in the mixed zone. Unfortunately, the dendritic MnS inclusions, even if the average diameter exceeds 52 μm, can act as the nucleation sites for ferrites, and the distribution of the sulfides promotes uneven microstructure in the steel.


Author(s):  
Yana Vasilchenko ◽  
Mykola Maluhin ◽  
Olena Berezshna ◽  
Oleg Prihodko

The work is devoted to the problem of fatigue strength of welded-cast joints as applied to the operating conditions of body parts of machines. Such operating conditions are characterized by non-uniformity of intensity and concentration of the load on parts and assemblies during the operation of the equipment. This heterogeneity of the load actualizes production of precisely welded-cast base parts for metalworking equipment beds. This is of considerable technological and economic interest. The aim of the work is to study the strength of welded-cast bearing structures in relation to the work of beds of heavy lathes. Unalloyed medium-carbon structural steel 35L and steel of ordinary quality MCT3 in the form of rolled products were used as the main materials for research. The research methods are presented. The study of the structure and properties of the welded joint made it possible to assess the technical feasibility of using the studied metals in the manufacture of welded-cast bearing structures. It has been established that welding of steel castings with rolled steel causes significant structural and mechanical heterogeneity. The influence of processing technology on the nature of formation of the structure of welded-cast joints is presented. The influence of heat treatment on the value of the hardness of the welded seam and the heat-affected zone was investigated. The study of the fatigue resistance of welded-cast specimens was carried out in relation to the operating conditions of joints undergoing vibration loads at normal temperatures, which can be classified as fatigue with a symmetric load cycle. It was found that the use of heat treatment of welded-cast specimens significantly reduces the mechanical heterogeneity of the joint along the seam and the heat-affected zone. Based on the results of studying mechanical characteristics, the choice of technology for the production of welded-cast joints is justified.


JTAM ROTARY ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Muhammad Irfan Riyadi ◽  
Rudi Siswanto

The use of metals in the environment is especially important in environments such rubbish in heavy equipment or trucks, especially those of the tailgate is a tool to bring a variety of organic waste and inorganic bring the matter dissolved through a liquid called leachate and make contact or direct contact with the steel so that corrosion occurs due to leachate or wastewater flow contains many corrosive compounds that make part tailgate become quickly corroded. This study aims to determine the bias steel resist corrosion rate. The steel used is steel steel ST-41 and ST-60 is a low carbon steel and medium carbon steel. The methods used in research in the methods of losing weight and observe the types of corrosion that occurs by means of immersion with ASTM G31-72 which vary contact time for 3 weeks. Based on research conducted showed the corrosion rate of the fastest occur in steel ST-60 with a contact time of 1 week soaked the leachate and 2 weeks in contact with the air due to differences in the composition of the steel ST-60 and steel ST-41 which has a chromium content so high that steel ST-41 is superior in resisting corrosion rate while the type of corrosion that occurs is evenly corrosion and atmospheric corrosion.


Sign in / Sign up

Export Citation Format

Share Document