reusable catalyst
Recently Published Documents


TOTAL DOCUMENTS

1728
(FIVE YEARS 245)

H-INDEX

72
(FIVE YEARS 7)

NANO ◽  
2022 ◽  
Author(s):  
Mehboobali Pannipara ◽  
Abdullah G. Al-Sehemi

Developing heterogeneous metal nanocatalysts is highly desirable since the catalyst can be easily separated and reused for several times. In this manuscript, we have immobilized gold nanoparticles (AuNPs) on the surface of mesoporous silica (SiO[Formula: see text] using simple amino acid-based phenolic chelating molecules and utilized as highly reusable catalyst for nitroarene reduction. The synthesized nanocomposites (Au@SiO2-1 and Au@SiO2-2) have been unambiguously confirmed using powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), high resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Interestingly, Au@SiO2-1 exhibited highly enhanced 4-nitrophenol reduction that was studied using absorption spectroscopy. Further catalytic activity of Au@SiO2-1 was also explored for 2-nitroaninline and 4-nitroaniline. The reusable studies demonstrated that the catalyst did not show significant change in the activity up to ten cycles. After catalytic reactions studies confirmed the strong attachment of AuNPs on the SiO2 matrix.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mansoureh Daraie ◽  
Donya Bagheri ◽  
Masoume Malmir ◽  
Majid M. Heravi

AbstractThe design, preparation and characterization of a novel composite based on functionalization of halloysite nanoclay with Schiff base followed by immobilization of copper iodide as nanoparticles is revealed. This novel nano composite was fully characterized by utilization of FTIR, SEM/EDX, TGA, XRD and BET techniques. This Cu(I) NPs immobilized onto halloysite was successfully examined as a heterogeneous, thus easily recoverable and reusable catalyst in one of classist organic name reaction so-called “Click Reaction”. That comprised a three component reaction of phenylacetylene, α-haloketone or alkyl halide and sodium azide in aqueous media to furnish 1,2,3‐triazoles in short reaction time and high yields. Remarkably, the examination of the reusability of the catalyst confirmed that the catalyst could be reused at least six reaction runs without appreciable loss of its catalytic activity.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6859
Author(s):  
Melike Çalışkan ◽  
Sema Akay ◽  
Berkant Kayan ◽  
Talat Baran ◽  
Dimitrios Kalderis

In the present study, a novel heterogeneous catalyst was successfully fabricated through the decoration of palladium nanoparticles on the surface of designed Fe3O4-coffee waste composite (Pd-Fe3O4-CWH) for the catalytic reduction of nitroarenes. Various characterization techniques such as XRD, FE-SEM and EDS were used to establish its nano-sized chemical structure. It was determined that Pd-Fe3O4-CWH is a useful nanocatalyst, which can efficiently reduce various nitroarenes, including 4-nitrobenzoic acid (4-NBA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine (4-NPD), 2-nitroaniline (2-NA) and 3-nitroanisole (3-NAS), using NaBH4 in aqueous media and ambient conditions. Catalytic reactions were monitored with the help of high-performance liquid chromatography. Additionally, Pd-Fe3O4-CWH was proved to be a reusable catalyst by maintaining its catalytic activity through six successive runs. Moreover, the nanocatalyst displayed a superior catalytic performance compared to other catalysts by providing a shorter reaction time to complete the reduction in nitroarenes.


2021 ◽  
Vol 21 (11) ◽  
pp. 5765-5775
Author(s):  
Reyhaneh Pourhasan-Kisomi ◽  
Mostafa Golshekan ◽  
Farhad Shirini

In the present study, we aimed to investigate the catalytic role of the newly reported MCM-41 -based nanocomposite in which the low acidity of this mesoporous moiety was favourably improved via the stabilization of zirconium nanoparticles and was magnetized to make a facile work-up procedure as an applicable and efficient method. The prepared Fe3O4@MCM-41 @ZrCI2 nanocomposite was successfully characterized using different analyses and then it was favourably exploited for the synthesis of spirooxindoles as the most prominent spiro compounds. As predicted, Fe3O4@MCM- 41 @ZrCI2 showed considerable efficiency in the promotion of the studied reaction.


Sign in / Sign up

Export Citation Format

Share Document