Cobalt supported on carbon nanotubes for methane chemical vapor deposition towards carbon nanotubes

2021 ◽  
Author(s):  
Laura Esteves ◽  
Hugo Alvarenga Oliveira ◽  
Y. T. Xing ◽  
Fabio Barboza Passos

Carbon nanotubes (CNT) application in heterogeneous catalysis has been attracting growing interest. However, the use of CNT-supported catalysts in the chemical vapor deposition for the production of new CNT is...

Author(s):  
M. Esmaieli ◽  
A. Khodadadi ◽  
Y. Mortazavi

In this study we report the effects of support and pretreatment conditions on growth of carbon nanotubes (CNTs) by chemical vapor deposition of methane on iron catalyst supported on MgO, silica or alumina. The iron was impregnated onto the supports, and then the samples were dried, calcined at 550°C and pretreated in either helium or hydrogen up to 1000°C before exposure to methane as a carbon source for CNTs growth. Temperature programmed reduction (TPR) of the fresh catalysts and the ones pre-treated in He and in H2 shows various interactions of the iron with supports at pretreatment conditions. The CNTs are characterized by SEM, Raman, FTIR, and TEM. The IG/ID of Raman spectroscopy are 6.2, 3.8 and 0.7 for the CNTs grown on the MgO, alumina, and silica-supported iron catalysts pretreated in helium, respectively. When the Fe/MgO catalyst is pretreated in hydrogen the IG/ID ratio dramatically reduces to 0.8. A less significant effect of pretreating of the catalysts in hydrogen is observed for silica- and alumina-supported catalysts. RBM peaks of Raman spectra along with TEM results indicate the formation of bundles of 0.8-1.2 nm single-wall as well as multiwall carbon nanotubes on the Fe/MgO catalyst pre-treated in He.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tarek M. Abdel-Fattah ◽  
Phillip A. Williams ◽  
Russell A. Wincheski ◽  
Qamar A. Shams

Single-walled carbon nanotubes (SWNTs) have been synthesized via a novel chemical vapor deposition (CVD) approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO) method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs.


1999 ◽  
Vol 8 (7) ◽  
pp. 545-550 ◽  
Author(s):  
Sun Lian-feng ◽  
Mao Jian-min ◽  
Chang Bao-he ◽  
Pan Zheng-wei ◽  
Wang Gang ◽  
...  

2008 ◽  
Vol 476 (1-2) ◽  
pp. 230-233 ◽  
Author(s):  
Haipeng Li ◽  
Naiqin Zhao ◽  
Chunnian He ◽  
Chunsheng Shi ◽  
Xiwen Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document