vapor deposition
Recently Published Documents


TOTAL DOCUMENTS

26811
(FIVE YEARS 3457)

H-INDEX

188
(FIVE YEARS 28)

2022 ◽  
Vol 141 ◽  
pp. 106431
Author(s):  
Maziyar Kazemi ◽  
Mohammad Zirak ◽  
Nafiseh Arab ◽  
Hassan Alehdaghi ◽  
Javad Baedi

2022 ◽  
Vol 203 ◽  
pp. 111111
Author(s):  
Michael G. Eberhardt ◽  
Andrea M. Hodge ◽  
Paulo S. Branicio

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 271
Author(s):  
Daniele Capista ◽  
Maurizio Passacantando ◽  
Luca Lozzi ◽  
Enver Faella ◽  
Filippo Giubileo ◽  
...  

We propose a simple method to fabricate a photodetector based on the carbon nanotube/silicon nitride/silicon (CNT/Si3N4/Si) heterojunction. The device is obtained by depositing a freestanding single-wall carbon nanotube (SWCNT) film on a silicon substrate using a dry transfer technique. The SWCNT/Si3N4/Si heterojunction is formed without the thermal stress of chemical vapor deposition used for the growth of CNTs in other approaches. The CNT film works as a transparent charge collecting electrode and guarantees a uniform photocurrent across the sensitive area of the device. The obtained photodetector shows a great photocurrent that increases linearly with the incident light intensity and grows with the increasing wavelength in the visible range. The external quantum efficiency is independent of the light intensity and increases with the wavelength, reaching 65% at 640 nm.


Author(s):  
Ding-Yuan Chen ◽  
Axel R Persson ◽  
Kai Hsin Wen ◽  
Daniel Sommer ◽  
Jan Gruenenpuett ◽  
...  

Abstract The impact on the performance of GaN HEMTs of in situ ammonia (NH3) pre-treatment prior to the deposition of silicon nitride (SiN) passivation with low-pressure chemical vapor deposition is investigated. Three different NH3 pre-treatment durations (0, 3, and 10 minutes) were compared in terms of interface properties and device performance. A reduction of oxygen at the interface between SiN and epi-structure is detected by Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy measurements in the sample subjected to 10 minutes of pre-treatment. The samples subjected to NH3 pre-treatment show a reduced surface-related current dispersion of 9 % (compared to 16% for the untreated sample), which is attributed to the reduction of oxygen at the SiN/epi interface. Furthermore, NH3 pre-treatment for 10 minutes significantly improves the current dispersion uniformity from 14.5 % to 1.9 %. The reduced trapping effects result in a high output power of 3.4 W/mm at 3 GHz (compared to 2.6 W/mm for the untreated sample). These results demonstrate that the in situ NH3 pre-treatment before low-pressure chemical vapor deposition of SiN passivation is critical and can effectively improves the large-signal microwave performance of GaN HEMTs.


Author(s):  
Danveer Singh ◽  
Michal Poplinger ◽  
Avraham Twitto ◽  
Rafi Snitkoff ◽  
Pilkhaz Nanikashvili ◽  
...  

Author(s):  
Hisayoshi Oshima ◽  
katsunori iwase ◽  
Yutaka Ohno

Abstract In floating catalyst chemical vapor deposition (FCCVD), when a carbon nanotube (CNT) network film is produced by filter collection, the film thickness is adjusted by controlling the collection time. However, even with consistent synthesis parameters, the synthesis condition in FCCVD changes constantly depending on the carbon and catalyst adhesion to the inner wall of the reaction tube. Thus, the rate of synthesis changes, making it difficult to obtain the target film thickness repeatedly and stably. We propose a method of monitoring CNT film thickness and percolation threshold by the in situ measurement of the electrical impedance during the deposition. The time evolution of the measured impedance is reproducible by an equivalent electrical circuit simulation.


Sign in / Sign up

Export Citation Format

Share Document