scholarly journals Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging

2022 ◽  
Author(s):  
Ruohan Xu ◽  
Dongfeng Dang ◽  
Zhi Wang ◽  
Yu Zhou ◽  
Yanzi Xu ◽  
...  

Organic nanocrystals (NCs) with high brightness are highly desirable for biological imaging. However, the preparation of NCs in a facile and fast method is still challenging. Herein, aggregation-induced emission (AIE)...

RSC Advances ◽  
2013 ◽  
Vol 3 (23) ◽  
pp. 8967 ◽  
Author(s):  
Chong Li ◽  
Wen-Liang Gong ◽  
Zhe Hu ◽  
Matthew P. Aldred ◽  
Guo-Feng Zhang ◽  
...  

2021 ◽  
Author(s):  
Diogo Bessa-Neto ◽  
Alexander Kuhlemann ◽  
Gerti Beliu ◽  
Valeria Pecoraro ◽  
Sören Doose ◽  
...  

ABSTRACTProgress in biological imaging is intrinsically linked to advances in labeling methods. The explosion in the development of high-resolution and super-resolution imaging calls for new approaches to label targets with small probes. These should allow to faithfully report the localization of the target within the imaging resolution – typically nowadays a few nanometers - and allow access to any epitope of the target, in the native cellular and tissue environment. We report here the development of a complete labeling and imaging pipeline using genetic code expansion and non-canonical amino acids in primary neurons that allows to fluorescently label masked epitopes in target transmembrane proteins in live neurons, both in dissociated culture and organotypic brain slices. This allowed us to image the differential localization of two glutamate receptor auxiliary proteins in complex with their partner with a variety of methods including widefield, confocal, and dSTORM super-resolution microscopy.


2019 ◽  
Vol 132 (22) ◽  
pp. 8638-8648 ◽  
Author(s):  
Hong Yang ◽  
Mengqi Li ◽  
Chong Li ◽  
Qianfu Luo ◽  
Ming‐Qiang Zhu ◽  
...  

Author(s):  
Judith M. Brock ◽  
Max T. Otten ◽  
Marc. J.C. de Jong

A Field Emission Gun (FEG) on a TEM/STEM instrument provides a major improvement in performance relative to one equipped with a LaB6 emitter. The improvement is particularly notable for small-probe techniques: EDX and EELS microanalysis, convergent beam diffraction and scanning. The high brightness of the FEG (108 to 109 A/cm2srad), compared with that of LaB6 (∼106), makes it possible to achieve high probe currents (∼1 nA) in probes of about 1 nm, whilst the currents for similar probes with LaB6 are about 100 to 500x lower. Accordingly the small, high-intensity FEG probes make it possible, e.g., to analyse precipitates and monolayer amounts of segregation on grain boundaries in metals or ceramics (Fig. 1); obtain high-quality convergent beam patterns from heavily dislocated materials; reliably detect 1 nm immuno-gold labels in biological specimens; and perform EDX mapping at nm-scale resolution even in difficult specimens like biological tissue.The high brightness and small energy spread of the FEG also bring an advantage in high-resolution imaging by significantly improving both spatial and temporal coherence.


Sign in / Sign up

Export Citation Format

Share Document