334. Antimony halides as solvents. Part II. Conductance data on solutions of organic chlorides in antimony trichloride at 75°

1961 ◽  
Vol 0 (0) ◽  
pp. 1711-1723 ◽  
Author(s):  
Anthony G. Davies ◽  
E. C. Baughan
2004 ◽  
Vol 59 (9) ◽  
pp. 615-620 ◽  
Author(s):  
Dip Singh Gill ◽  
Hardeep Anand ◽  
J. K. Puri

Viscosity and molar conductance of Bu4NBPh4, Bu4NClO4, [Cu(CH3CN)4]ClO4, NaClO4 and NaBPh4 have been measured in the concentration ranges 0.02 - 0.5 mol dm−3 and 0.0005 - 0.0065 mol dm−3 at 298.15 K in AN + DMF mixtures containing 0, 10, 20, 40, 60, 75, 80, 90, and 100 mol % DMF. The viscosity data have been analyzed by the extended form of the Jones-Dole equation in the form: (η/η0) = 1+AC1/2+BC+DC2 to evaluate B and D parameters and the conductance data by the Shedlovsky equation to evaluate Λo and KA values of the salts. Ionic viscosity B-coefficients (B±) and ionic molar conductances (λ◦ i) have been calculated by using Bu4NBPh4 as a reference electrolyte. Solvated radii (ri) for Na+, Cu+ and ClO4 − have been estimated by using Gill’s modification of Stokes’ law. The variation of B± and ri as a function of mol % DMF shows that both Na+ and Cu+ are highly solvated in AN + DMF mixtures over the entire composition region. The solvation passes through a maximum between 40 to 80 mol % DMF. Both Na+ and Cu+ are more strongly solvated between 40 to 80 mol % DMF. Cu+ is relatively more strongly solvated than Na+ in AN + DMF mixtures. ClO4 − shows poor solvation in AN + DMF mixtures.


1948 ◽  
Vol 25 (12) ◽  
pp. 457-461 ◽  
Author(s):  
Catherine M. Hall ◽  
Leah E. Castillon ◽  
Wilma A. Guice ◽  
Charlotte H. Boatner

2021 ◽  
Author(s):  
Yichun Su ◽  
Shuwei Zhang ◽  
Yuan Yuan ◽  
Qiyuan Ma ◽  
Zheng Sun ◽  
...  

In the presence of dioxygen, an antimony trichloride enabled conjunctive sp3 C-H bond functionalization and carbochlorination of glycines was realized, providing a series of chlorinated quinolines in high yields. The...


1976 ◽  
Vol 54 (18) ◽  
pp. 2953-2966 ◽  
Author(s):  
Douglas E. Goldsack ◽  
Raymond Franchetto ◽  
Arlene (Anttila) Franchetto

The Falkenhagen–Leist–Kelbg equation for the conductivity of electrolyte solutions has been extended to include the effect of solvation on the concentration of the salt. Two equations have been derived, both of which have only two freely adjustable parameters at any temperature: Λ0 the molar conductance of the salt at infinite dilution and H0, a solvation number parameter for the salt. In one of these equations H0 is assumed to be independent of concentration. In the other, H0 is assumed to be dependent on concentration and an explicit concentration dependent formula is derived for H0. Conductance data for the alkali halide salts in the 0.5 to 10 m concentration range and 0 to 60 °C temperature range were found to be adequately reproduced by both these equations, but with the variable hydration parameter equation yielding better fits to the data. The H0 parameters from the fixed hydration parameter equation are found to be similar to those obtained from the analysis of activity coefficient and other data whereas the variable hydration parameter equation yields H0 parameters which are much larger.


Sign in / Sign up

Export Citation Format

Share Document