Shape similarity between solute and solvent molecules: its role in specific molecular recognition in hydrocarbon-containing solvents

Author(s):  
Takashi Isago ◽  
Tadashi Endo
Author(s):  
Tadashi Endo ◽  
Hiromichi Takei ◽  
Takashi Isago ◽  
Kazuo Guro ◽  
Yutaka Nakajima ◽  
...  

Author(s):  
Tadashi Endo ◽  
Hidetoshi Tasai ◽  
Kazuhiro Miyazawa ◽  
Masayuki Endo ◽  
Kotaro Kato ◽  
...  

1999 ◽  
Vol 24 (4) ◽  
pp. 377-383
Author(s):  
G. A. van zanten ◽  
A. van de sande ◽  
M. P. brocaar

2020 ◽  
Author(s):  
Junxia Ren ◽  
Yaozu Liu ◽  
Xin Zhu ◽  
Yangyang Pan ◽  
Yujie Wang ◽  
...  

<p><a></a><a></a><a></a><a></a><a></a><a></a><a></a><a>The development of highly-sensitive recognition of </a><a></a><a></a><a></a><a></a><a>hazardous </a>chemicals, such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs), is of significant importance because of their widespread social concerns related to environment and human health. Here, we report a three-dimensional (3D) covalent organic framework (COF, termed JUC-555) bearing tetraphenylethylene (TPE) side chains as an aggregation-induced emission (AIE) fluorescence probe for sensitive molecular recognition.<a></a><a> </a>Due to the rotational restriction of TPE rotors in highly interpenetrated framework after inclusion of dimethylformamide (DMF), JUC-555 shows impressive AIE-based strong fluorescence. Meanwhile, owing to the large pore size (11.4 Å) and suitable intermolecular distance of aligned TPE (7.2 Å) in JUC-555, the obtained material demonstrates an excellent performance in the molecular recognition of hazardous chemicals, e.g., nitroaromatic explosives, PAHs, and even thiophene compounds, via a fluorescent quenching mechanism. The quenching constant (<i>K</i><sub>SV</sub>) is two orders of magnitude better than those of other fluorescence-based porous materials reported to date. This research thus opens 3D functionalized COFs as a promising identification tool for environmentally hazardous substances.</p>


Sign in / Sign up

Export Citation Format

Share Document