scholarly journals The organization of the major protein of the human erythrocyte membrane

1974 ◽  
Vol 137 (3) ◽  
pp. 531-534 ◽  
Author(s):  
D. H. Boxer ◽  
R. E. Jenkins ◽  
M. J. A. Tanner

The enzyme lactoperoxidase was used to catalyse the radioiodination of membrane proteins in intact human erythrocytes and in erythrocyte ‘ghosts’. Two major proteins of the erythrocyte membrane were isolated after iodination of these two preparations, and the peptide ‘maps’ of each protein so labelled were compared. Peptides from both proteins are labelled in the intact cell. In addition, further mobile peptides derived from one of the proteins are labelled only in the ‘ghost’ preparation. Various sealed ‘ghost’ preparations were also iodinated, lactoperoxidase being present only at either the cytoplasmic or extra-cellular surface of the membrane. The peptide ‘maps’ of protein E (the major membrane protein) labelled in each case were compared. Two discrete sets of labelled peptides were consistently found. One group is obtained when lactoperoxidase is present at the extra-cellular surface and the other group is found when the enzyme is accessible only to the cytoplasmic surface of the membrane. The results support the assumption that the organization of protein E in the membrane of the intact erythrocyte is unaltered on making erythrocyte ‘ghosts’. They also confirm previous suggestions that both the sialoglycoprotein and protein E extend through the human erythrocyte membrane.

1996 ◽  
Vol 314 (3) ◽  
pp. 881-887 ◽  
Author(s):  
Yehudit ZIPSER ◽  
Nechama S. KOSOWER

The anion-exchange band 3 protein is the main erythrocyte protein that is phosphorylated by tyrosine kinase. To study the regulation of band 3 phosphorylation, we examined phosphotyrosine phosphatase (PTP) activity in the human erythrocyte. We show that the human erythrocyte membrane contains a band 3-associated neutral PTP which is activated by Mg2+ and inhibited by Mn2+ and vanadate. The PTP is active in the intact cell and in the isolated membrane. A major fraction of the PTP is tightly bound to the membrane and can be extracted from it by Triton X-100; a minor part is associated with the Triton X-100-insoluble cytoskeleton. The behaviour of the PTP parallels that of band 3, the major fraction of which is extractable by detergents with a minor fraction being anchored to the cytoskeleton. Moreover, band 3 is co-precipitated when the PTP is immunoprecipitated from solubilized membranes, and PTP is co-precipitated when band 3 is immunoprecipitated. The PTP appears to be related to PTP1B (identified using an antibody to an epitope in its catalytic domain and by molecular mass). The system described here has a unique advantage for PTP research, since it allows the study of the interaction of a PTP with an endogenous physiological substrate that is present in substantial amounts in the cell membrane. The membrane-bound, band 3-associated, PTP may play a role in band 3 function in the erythrocyte and in other cells which have proteins analogous to band 3.


1987 ◽  
Vol 243 (1) ◽  
pp. 277-280 ◽  
Author(s):  
S High ◽  
M J A Tanner

We have isolated cDNA clones corresponding to the human erythrocyte membrane sialoglycoprotein beta. The clones encompass the coding region for the protein, 120 residues of the 5′ non-coding region and the 3′ non-coding region. The cDNA sequence suggests that sialoglycoprotein beta is not translated with the cleaved N-terminal signal sequence usual in a membrane protein of this type. Sialoglycoprotein beta or a closely related homologue is present in human kidney as well as erythroid cells.


1978 ◽  
Vol 76 (2) ◽  
pp. 512-531 ◽  
Author(s):  
D Shotton ◽  
K Thompson ◽  
L Wofsy ◽  
D Branton

We have used freeze-etching, before and after immunoferritin labeling, to visualize spectrin molecules and other surface proteins of the human erythrocyte membrane. After intramembrane particle aggregation was induced, spectrin molecules, identified by labeling with ferritin-conjugated antispectrin, were clustered on the cytoplasmic surface of the membrane in patches directly underlying the particle clusters. This labeling pattern confirms the involvement of spectrin in such particle aggregates, as previously inferred from indirect evidence. Ferritin-conjugated antihapten molecules, directed against external and cytoplasmic surface proteins of the erythrocyte membrane which had been covalently labeled nonspecifically with the hapten p-diazoniumphenyl-beta-D-lactoside, were similarly found in direct association with such intramembrane particle aggregates. This indicates that when spectrin and the intramembrane particles are aggregated, all the major proteins of the erythrocyte membrane are constrained to coaggregate with them. Although giving no direct information concerning the freedom of translational movement of proteins in the unperturbed erythrocyte membrane, these experiments suggest that a close dynamic association may exist between the integral and peripheral protein components of the membrane, such that immobilization of one component can restrict the lateral mobility of others.


1994 ◽  
Vol 224 (2) ◽  
pp. 575-580 ◽  
Author(s):  
Amit K. Das ◽  
Raja Bhattacharya ◽  
Manikuntala Kundu ◽  
Parul Chakrabarti ◽  
Joyoti Basu

Sign in / Sign up

Export Citation Format

Share Document