signal sequence
Recently Published Documents


TOTAL DOCUMENTS

1784
(FIVE YEARS 152)

H-INDEX

112
(FIVE YEARS 6)

Author(s):  
Mukul Sharma ◽  
Pushpendra Singh

Abstract: TlyA proteins are related to distinct functions in a diverse spectrum of bacterial pathogens including mycobacterial spp. There are several annotated proteins function as hemolysin or pore forming molecules that play an important role in the virulence of pathogenic organisms. Many studies reported the dual activity of mycobacterial TlyA as ‘hemolysin’ and ‘S-adenosylmethionine dependent rRNA methylase’. To act as a hemolysin, a sequence must have a signal sequence and transmembrane segment which helps the protein to enter the extracellular environment. Interestingly, the mycobacterial tlyA has neither a traditional signal sequences of general/sec/tat pathways nor any transmembrane segments are present. Still it can reach the extracellular milieu with the help of non-classical signal mechanisms. Also, retention of tlyA in cultivable mycobacterial pathogens (such as Mycobacterium tuberculosis and M. marinum) as well as uncultivated mycobacterial pathogens despite their extreme reductive evolution (such as M. leprae, M. lepromatosis and M. uberis) suggests its crucial role in evolutionary biology of pathogenic mycobacteria. Numerous virulence factors have been characterised from the uncultivable mycobacteria but the information of TlyA protein is still limited in terms of molecular and structural characterisation. The genomic insights offered by comparative analysis of TlyA sequences and its conserved domains reveal its pore forming activity which further confirms its role as a virulence protein, particularly in uncultivable mycobacteria. Therefore, this review presents a comparative analysis of mycobacterial TlyA family by sequence homology and alignment to improve our understanding of this unconventional hemolysin and RNA methyltransferase TlyA of uncultivable mycobacteria.


2021 ◽  
Author(s):  
Min Kwon ◽  
Yeojin Seo ◽  
Hana Cho ◽  
Jihye Choi ◽  
Hyung Soon Kim ◽  
...  

Preconditioning peripheral nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these regeneration-associated macrophages influence the neuronal capacity of axon regeneration remains elusive. The present study reports that oncomodulin (ONCM) is an effector molecule derived from the regeneration-associated macrophages. ONCM was highly upregulated in DRG macrophages following preconditioning injury and necessary for the preconditioning-induced neurite outgrowth. ONCM-deficient macrophages failed to generate neurite outgrowth activity of the conditioned medium in the in vitro model of neuron-macrophage interaction. CCL2/CCR2 signaling is an upstream regulator of ONCM since the ONCM upregulation was dependent on CCR2 and CCL2 overexpression-mediated conditioning effects were attenuated in ONCM-deficient mice. Direct application of ONCM potently increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. AAV-mediated overexpression of ONCM construct with the signal sequence increased neuronal secretion of ONCM and enhanced neurite outgrowth in an autocrine manner. For a clinically relevant approach, we developed a nanogel-mediated system for localized delivery of recombinant ONCM to DRG tissue. Electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) resulted in a slow release of ONCM allowing sustained bioactivity. Intraganglionic injection of REPL-NG/ONCM complex achieved a remarkable long-range axonal regeneration beyond spinal cord lesion, surpassing the extent expected from the preconditioning effects. The NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.


Author(s):  
Emi Tanaka ◽  
Takeaki Wajima ◽  
Kei-ichi Uchiya ◽  
Hidemasa Nakaminami

The presence of Haemophilus influenzae strains with low susceptibility to quinolones has been reported worldwide. However, the emergence and dissemination mechanisms remain unclear. In this study, a total of 14 quinolone-low-susceptible H. influenzae isolates were investigated phylogenetically and in vitro resistance transfer assay in order to elucidate the emergence and dissemination mechanisms. The phylogenetic analysis based on gyrA sequences showed that strains with the same sequence type determined by multilocus sequence typing were classified into different clusters, suggesting that H. influenzae quinolone resistance emerges not only by point mutation, but also by the horizontal transfer of mutated gyrA . Moreover, the in vitro resistance transfer assay confirmed the horizontal transfer of quinolone resistance and indicated an active role of extracellular DNA in the resistance transfer. Interestingly, the horizontal transfer of parC only occurred in those cells that harbored a GyrA with amino acid substitutions, suggesting a possible mechanism of quinolone resistance in clinical settings. Moreover, the uptake signal and uptake-signal-like sequences located downstream of the quinolone resistant-determining regions of gyrA and parC , respectively, contributed to the horizontal transfer of resistance in H. influenzae . Our study demonstrates that the quinolone resistance of H. influenzae could emerge due to the horizontal transfer of gyrA and parC via recognition of an uptake signal sequence or uptake-signal-like sequence. Since the presence of quinolone-low-susceptible H. influenzae with amino acid substitutions in GyrA have been increasing in recent years, it is necessary to focus our attention to the acquisition of further drug resistance in these isolates.


2021 ◽  
Author(s):  
Xiaoxi Xu ◽  
Yumeng Huang ◽  
Xin Li ◽  
Peter Arvan ◽  
Ming Liu

In the endoplasmic reticulum (ER), the Translocation-Associated Protein complex (TRAP, also called Signal sequence receptor, SSR) includes four integral membrane proteins TRAPα/SSR1, TRAPβ/SSR2 and TRAPδ/SSR4 with the bulk of their extramembranous portions primarily in the ER lumen, whereas the extramembranous portion of TRAPγ/SSR3 is primarily cytosolic. Individually diminished expression of either TRAPα/SSR1, TRAPβ/SSR2 or TRAPδ/SSR4 mRNA is known in each case to lower TRAPα/SSR1 protein levels leading to impaired proinsulin biosynthesis, whereas forced expression of TRAPα/SSR1 at least partially suppresses the proinsulin biosynthetic defect. Here we report that diminished TRAPγ/SSR3 expression in pancreatic β-cells leaves TRAPα/SSR1 levels unaffected while nevertheless inhibiting co-translational and post-translational translocation of preproinsulin into the ER. Crucially, acute exposure to high glucose leads to a rapid upregulation of both TRAPγ/SSR3 and proinsulin protein without change in the respective mRNA levels — observed in cultured rodent β-cell lines and confirmed in human islets. Strikingly, pancreatic β-cells with suppressed TRAPγ/SSR3 expression are blocked in glucose-dependent upregulation of proinsulin (or insulin) biosynthesis. Most remarkable, overexpression of TRAPγ/SSR3 in control β-cells raises proinsulin levels even without boosting extracellular glucose. The data suggest the possibility that TRAPγ/SSR3 may fulfill a rate-limiting function in preproinsulin translocation across the ER membrane for proinsulin biosynthesis.


2021 ◽  
Author(s):  
Xiaoxi Xu ◽  
Yumeng Huang ◽  
Xin Li ◽  
Peter Arvan ◽  
Ming Liu

In the endoplasmic reticulum (ER), the Translocation-Associated Protein complex (TRAP, also called Signal sequence receptor, SSR) includes four integral membrane proteins TRAPα/SSR1, TRAPβ/SSR2 and TRAPδ/SSR4 with the bulk of their extramembranous portions primarily in the ER lumen, whereas the extramembranous portion of TRAPγ/SSR3 is primarily cytosolic. Individually diminished expression of either TRAPα/SSR1, TRAPβ/SSR2 or TRAPδ/SSR4 mRNA is known in each case to lower TRAPα/SSR1 protein levels leading to impaired proinsulin biosynthesis, whereas forced expression of TRAPα/SSR1 at least partially suppresses the proinsulin biosynthetic defect. Here we report that diminished TRAPγ/SSR3 expression in pancreatic β-cells leaves TRAPα/SSR1 levels unaffected while nevertheless inhibiting co-translational and post-translational translocation of preproinsulin into the ER. Crucially, acute exposure to high glucose leads to a rapid upregulation of both TRAPγ/SSR3 and proinsulin protein without change in the respective mRNA levels — observed in cultured rodent β-cell lines and confirmed in human islets. Strikingly, pancreatic β-cells with suppressed TRAPγ/SSR3 expression are blocked in glucose-dependent upregulation of proinsulin (or insulin) biosynthesis. Most remarkable, overexpression of TRAPγ/SSR3 in control β-cells raises proinsulin levels even without boosting extracellular glucose. The data suggest the possibility that TRAPγ/SSR3 may fulfill a rate-limiting function in preproinsulin translocation across the ER membrane for proinsulin biosynthesis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Wen Zhu ◽  
Lifu Hu ◽  
Yang Wang ◽  
Liangyin Lv ◽  
Hui Wang ◽  
...  

Abstract Background Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. Results In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. Conclusions The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents. Graphical Abstract


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qing Lan ◽  
Yitong Duan ◽  
Pingping Wu ◽  
Xueyin Li ◽  
Yao Yu ◽  
...  

Abstract Background Hemicellulose acts as one factor contributing to the recalcitrance of lignocellulose that prevents cellulases to degrade the cellulose efficiently even in low quantities. Supplement of hemicellulases can enhance the performance of commercial cellulases in the enzymatic hydrolyses of lignocellulose. Kluyveromyce marxianus is an attractive yeast for cellulosic ethanol fermentation, as well as a promising host for heterologous protein production, since it has remarkable thermotolerance, high growth rate, and broad substrate spectrum etc. In this study, we attempted to coordinately express multiple hemicellulases in K.marxianus through a 2A-mediated ribosome skipping to self-cleave polyproteins, and investigated their capabilities for saccharification and ethanol production from corncobs. Results Two polycistronic genes IMPX and IMPαX were constructed to test the self-cleavage of P2A sequence from the Foot-and-Mouth Disease virus (FMDV) in K.marxianus. The IMPX gene consisted of a β-mannanase gene M330 (without the stop codon), a P2A sequence and a β-xylanase gene Xyn-CDBFV in turn. In the IMPαX gene, there was an additional α-factor signal sequence in frame with the N-terminus of Xyn-CDBFV. The extracellular β-mannanase activities of the IMPX and IMPαX strains were 21.34 and 15.50 U/mL, respectively, but the extracellular β-xylanase activity of IMPαX strain was much higher than that of the IMPX strain, which was 136.17 and 42.07 U/mL, respectively. Subsequently, two recombinant strains, the IXPαR and IMPαXPαR, were constructed to coordinately and secretorily express two xylantic enzymes, Xyn-CDBFV and β-D-xylosidase RuXyn1, or three hemicellulolytic enzymes including M330, Xyn-CDBFV and RuXyn1. In fed-batch fermentation, extracellular activities of β-xylanase and β-xylosidase in the IXPαR strain were 1664.2 and 0.90 U/mL. Similarly, the IMPαXPαR strain secreted the three enzymes, β-mannanase, β-xylanase, and β-xylosidase, with the activities of 159.8, 2210.5, and 1.25 U/mL, respectively. Hemicellulolases of both strains enhanced the yields of glucose and xylose from diluted acid pretreated (DAP) corncobs when acted synergistically with commercial cellulases. In hybrid saccharification and fermentation (HSF) of DAP corncobs, hemicellulases of the IMPαXPαR strain increased the ethanol yield by 8.7% at 144 h compared with the control. However, both ethanol and xylose yields were increased by 12.7 and 18.2%, respectively, at 120 h in HSF of aqueous ammonia pretreated (AAP) corncobs with this strain. Our results indicated that coordinate expression of hemicellulolytic enzymes in K. marxianus promoted the saccharification and ethanol production from corncobs. Conclusions The FMDV P2A sequence showed high efficiency in self-cleavage of polyproteins in K. marxianus and could be used for secretory expression of multiple enzymes in the presence of their signal sequences. The IMPαXPαR strain coexpressed three hemicellulolytic enzymes improved the saccharification and ethanol production from corncobs, and could be used as a promising strain for ethanol production from lignocelluloses.


Author(s):  
Jian Wang ◽  
Wenjing Jiang ◽  
Yan Yan ◽  
Wenbing Chen ◽  
Junseok Kim

Accurate detection of arrhythmia signal types is of great significance for the early detection of heart disease and its subsequent treatment. The primary purpose of this study is to explore an electrocardiogram (ECG) classification system to improve its performance and achieve excellent computing performance, especially for large sample datasets. We classified ECG signals using the Hurst exponent, which is an ECG feature extracted by multifractal detrended moving average cross-correlation analysis (MF-XDMA). In addition, we used multifractal methods such as multifractal detrended fluctuation analysis (MF-DFA), multifractal detrended cross-correlation analysis (MF-DCCA) and multifractal detrended moving average (MF-DMA) to extract the features of ECG signals, and we used a support vector machine (SVM) to classify the four types of feature data. The experimental results show that MF-XDMA-SVM has the best classification performance for atrial premature beat (APB) and bigeminy signals, which indicates that MF-XDMA-SVM is the most effective for the extraction of ECG signal sequence features among the four multifractal models.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009595
Author(s):  
Tarkeshwar Kumar ◽  
Satarupa Maitra ◽  
Abdur Rahman ◽  
Souvik Bhattacharjee

Tail-anchored (TA) proteins are defined by the absence of N-terminus signal sequence and the presence of a single transmembrane domain (TMD) proximal to their C-terminus. They play fundamental roles in cellular processes including vesicular trafficking, protein translocation and quality control. Some of the TA proteins are post-translationally integrated by the Guided Entry of TA (GET) pathway to the cellular membranes; with their N-terminus oriented towards the cytosol and C-terminus facing the organellar lumen. The TA repertoire and the GET machinery have been extensively characterized in the yeast and mammalian systems, however, they remain elusive in the human malaria parasite Plasmodium falciparum. In this study, we bioinformatically predicted a total of 63 TA proteins in the P. falciparum proteome and revealed the association of a subset with the P. falciparum homolog of Get3 (PfGet3). In addition, our proximity labelling studies either definitively identified or shortlisted the other eligible GET constituents, and our in vitro association studies validated associations between PfGet3 and the corresponding homologs of Get4 and Get2 in P. falciparum. Collectively, this study reveals the presence of proteins with hallmark TA signatures and the involvement of evolutionary conserved GET trafficking pathway for their targeted delivery within the parasite.


Sign in / Sign up

Export Citation Format

Share Document