scholarly journals Lysophosphatidylcholines can modulate the activity of the glucagon-stimulated adenylate cyclase from rat liver plasma membranes

1979 ◽  
Vol 178 (1) ◽  
pp. 217-221 ◽  
Author(s):  
M D Houslay ◽  
R W Palmer

1. Synthetic lysophosphatidylcholines inhibit the glucagon-stimulated adenylate cyclase activity of rat liver plasma membranes at concentrations two to five times lower than those needed to inhibit the fluoride-stimulated activity. 2. Specific 125I-labelled glucagon binding to hormone receptors is inhibited at concentrations similar to those inhibiting the fluoride-stimulated activity. 3. At concentrations of lysophosphatidylcholines immediately below those causing inhibition, an activation of adenylate cyclase activity or hormone binding was observed. 4 These effects are essentially reversible. 5. We conclude that the increased sensitivity of glucagon-stimulated adenylate cyclase to inhibition may be due to the lysophosphatidylcholines interfering with the physical coupling between the hormone receptor and catalytic unit of adenylate cyclase. 6. We suggest that, in vivo, it is possible that lysophosphatidylcholines may modulate the activity of adenylate cyclase only when it is in the hormone-stimulated state.

1986 ◽  
Vol 235 (1) ◽  
pp. 237-243 ◽  
Author(s):  
M D Houslay ◽  
L Needham ◽  
N J Dodd ◽  
A M Grey

Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new ‘break’ occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.


1983 ◽  
Vol 245 (5) ◽  
pp. R737-R742
Author(s):  
S. Ghosh ◽  
M. S. Liu

The effects of endotoxin administration on adenylate cyclase in dog liver plasma membranes were studied. The basal, fluoride-, guanine nucleotide-, isoproterenol-, and glucagon-stimulated adenylate cyclase activities were decreased by 61, 62, 69, 83, and 63%, respectively, 2 h after in vivo administration of endotoxin. Endotoxin (100 micrograms/ml) in vitro decreased the guanine nucleotide-, isoproterenol-, and glucagon-stimulated adenylate cyclase activities by 24, 25, and 21%, respectively. These data demonstrate that endotoxin administered in vivo or in vitro had an inhibitory effect on the adenylate cyclase enzyme system in dog liver plasma membranes. Because of the involvement of the adenylate cyclase-adenosine 3',5'-cyclic monophosphate (cAMP) system in the regulation of hepatic carbohydrate metabolism, the finding that endotoxin administration decreased adenylate cyclase activity in the liver should contribute to the understanding of the pathophysiology of altered hepatic glucose homeostasis during shock.


Sign in / Sign up

Export Citation Format

Share Document