scholarly journals Identification of two lithocholic acid-binding proteins. Separation of ligandin from glutathione S-transferase B

1979 ◽  
Vol 181 (3) ◽  
pp. 699-708 ◽  
Author(s):  
J D Hayes ◽  
R C Strange ◽  
I W Percy-Robb

1. Two lithocholic acid-binding proteins in rat liver cytosol, previously shown to have glutathione S-transferase activity, were resolved by CM-Sephadex chromatography. 2. Phenobarbitone administration resulted in induction of both binding proteins. 3. The two proteins had distinct subunit compositions indicating that they are dimers with mol.wts. 44 000 and 47 000. 4. The two lithocholic acid-binding proteins were identified by comparing their elution volumes from CM-Sephadex with those of purified ligandin and glutathione S-transferase B prepared by published procedures. Ligandin and glutathione S-transferase B were eluted separately, as single peaks of enzyme activity, at volumes equivalent to the two lithocholic acid-binding proteins. 5. Peptide ‘mapping’ revealed structural differences between the two proteins.

1977 ◽  
Vol 165 (3) ◽  
pp. 425-429 ◽  
Author(s):  
R C Strange ◽  
R Cramb ◽  
J D Hayes ◽  
I W Percy-Robb

1. The partial purification of two lithocholic acid-binding proteins from liver 100 000g supernatants is described. 2. Gel-filtration, (NH4)2SO4 fractionation, Ca3(PO4)2 fractionation and ion-exchange chromatography were used. 3. Both proteins exhibited glutathione S-transferase activity; one may be the non-specific anion-binding protein ligandin. 4. Glutathione S-transferase activity of one of the binding proteins was inhibited by lithocholic acid.


1981 ◽  
Vol 197 (2) ◽  
pp. 491-502 ◽  
Author(s):  
J D Hayes ◽  
R C Strange ◽  
I W Percy-Robb

The two dimeric lithocholic acid-binding proteins previously identified as ligandin (YaYa) and glutathione S-transferase B (YaYc) were isolated from rat liver cytosol. These proteins have molecular weights of 44000 and 47000 respectively. The recovery of these two proteins from liver was not affected by the addition of the proteinase inhibitor Trasylol. No spontaneous interconversion between these two proteins was observed on storage. YaYa and YaYc proteins yielded peptides of identical molecular weight after limited digestion with Staphylococcus aureus V8 proteinase. Analytical and preparative tryptic-digest peptide ‘maps’ showed that all the soluble peptides obtained from YaYa protein were also recovered from YaYc protein. Approximately six extra soluble peptides, which were not recovered from YaYa protein, were obtained from the tryptic digest of YaYc protein. Subdigests of the insoluble tryptic-digest ‘cores’ also resulted in the recovery of identical peptides from both proteins. Evidence is presented that the Ya subunit possessed by both proteins is identical; glutathione S transferase B is a hybrid of ligandin and glutathione S-transferase AA. The Ya monomer is responsible for lithocholate binding.


1980 ◽  
Vol 185 (1) ◽  
pp. 83-87 ◽  
Author(s):  
J D Hayes ◽  
R C Strange ◽  
I W Percy-Robb

Cholic acid-binding activity in cytosol from rat livers appears to be mainly associated with enzymes having glutathione S-transferase activity; at least four of the enzymes in this group can bind the bile acid. Examination of the subunit compositions of different glutathione S-transferases indicated that cholic acid binding and the ability to conjugate reduced glutathione with 1,2-dichloro-4-nitrobenzene may be ascribed to different subunits.


1977 ◽  
Vol 5 (5) ◽  
pp. 1404-1407 ◽  
Author(s):  
JULES A. T. P. MEUWISSEN ◽  
MARCEL ZEEGERS ◽  
KAILA SINGH SRAI ◽  
BRIAN KETTERER

Sign in / Sign up

Export Citation Format

Share Document