ion exchange
Recently Published Documents





2022 ◽  
Vol 113 ◽  
pp. 219-230
Shuang Tong ◽  
Shaoxiang Zhang ◽  
Yan Zhao ◽  
Chuanping Feng ◽  
Weiwu Hu ◽  

2022 ◽  
Vol 808 ◽  
pp. 152137
Zhen Liu ◽  
Morgan Solliec ◽  
Isabelle Papineau ◽  
Kim M. Lompe ◽  
Madjid Mohseni ◽  

2022 ◽  
Vol 304 ◽  
pp. 114173
Changchen Lu ◽  
Jiaojiao Yang ◽  
Asghar Khan ◽  
Jing Yang ◽  
Qimeng Li ◽  

Nargiza Bekbutaeva ◽  

results of studies of the forms of finding and methods of extracting molybdenum from acidic solutions with a high concentration of sulfuric acid are presented. Ion-exchange resins of various modifications were tested to determine the most effective for molybdenum during its sorption from a sulfuric acid solution.

Henrique Santana de Carvalho Neves ◽  
Thiago Lopes da Silva ◽  
Meuris Gurgel Carlos da Silva ◽  
Reginaldo Guirardello ◽  
Melissa Gurgel Adeodato Vieira

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 311
Ruth Oye Auke ◽  
Guilhem Arrachart ◽  
Romain Tavernier ◽  
Ghislain David ◽  
Stéphane Pellet-Rostaing

Rare-earth elements (REEs) are involved in most high technology devices and have become critical for many countries. The progress of processes for the extraction and recovery of REEs is therefore essential. Liquid–solid extraction methods are an attractive alternative to the conventional solvent extraction process used for the separation and/or purification of REEs. For this purpose, a solid-phase extraction system was investigated for the extraction and valorization of REEs. Ion-exchange resins were synthesized involving the condensation of terephthalaldehyde with resorcinol under alkaline conditions. The terephthalaldehyde, which is a non-hazardous aromatic dialdehyde, was used as an alternative to formaldehyde that is toxic and traditionally involved to prepare phenolic ion-exchange resins. The resulting formaldehyde-free resole-type phenolic resins were characterized and their ion-exchange capacity was investigated in regard to the extraction of rare-earth elements. We herein present a promising formaldehyde and phenol-free as a potential candidate for solid–liquid extraction REE with a capacity higher than 50 mg/g and the possibility to back-extract the REEs by a striping step using a 2 M HNO3 solution.

Sign in / Sign up

Export Citation Format

Share Document