anion binding
Recently Published Documents


TOTAL DOCUMENTS

1229
(FIVE YEARS 156)

H-INDEX

80
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Xin Wu ◽  
Patrick Wang ◽  
William Lewis ◽  
Yun-Bao Jiang ◽  
Philip Alan Gale

Understanding non-covalent molecular recognition events at biomembrane interfaces is important in biological, medicinal, and materials chemistry research.1 Despite the crucial regulatory roles of anion binding/transport processes at biomembranes, no information is available regarding how strongly anions can bind to naturally occurring or synthetic receptors in lipid bilayer environments compared to their well-established behaviour in solutions.2 To bridge this knowledge gap, we synthesised a flat macrocycle that possesses a record aqueous SO42– affinity among neutral receptors and exploited its unique fluorescence response at interfaces. We show that the determinants of anion binding are extraordinarily different in organic solvents and in lipid bilayers. The high charge density of dihydrogen phosphate and chloride ions prevails in DMSO, however in lipids they fail to bind the macrocycle. Perchlorate and iodide hardly bind in DMSO but show significant affinities for the macrocycle in lipids. Our results demonstrate a surprisingly great advantage of large, charge-diffuse anions to bind to a lipid-embedded synthetic receptor mainly attributed to their higher polarisabilities and deeper penetration into the bilayer, beyond the common knowledge of dehydration energy-governed selectivity. The elucidation of these principles enhances our understanding of biological anion recognition functions in membranes and guides the design of ionophores and molecular machines operating at biomembrane interfaces.


2021 ◽  
pp. 387-399
Author(s):  
Alica C. Keuper ◽  
Olga García Mancheño
Keyword(s):  

2021 ◽  
Author(s):  
Xin Wu ◽  
Patrick Wang ◽  
William Lewis ◽  
Yun-Bao Jiang ◽  
Philip Alan Gale

Understanding non-covalent molecular recognition events at biomembrane interfaces is important in biological, medicinal, and materials chemistry research.1 Despite the crucial regulatory roles of anion binding/transport processes at biomembranes, no information is available regarding how strongly anions can bind to naturally occurring or synthetic receptors in lipid bilayer environments compared to their well-established behaviour in solutions.2 To bridge this knowledge gap, we synthesised a flat macrocycle that possesses a record aqueous SO42– affinity among neutral receptors and exploited its unique fluorescence response at interfaces. We show that the determinants of anion binding are extraordinarily different in organic solvents and in lipid bilayers. The high charge density of dihydrogen phosphate and chloride ions prevails in DMSO, however in lipids they fail to bind the macrocycle. Perchlorate and iodide hardly bind in DMSO but show significant affinities for the macrocycle in lipids. Our results demonstrate a surprisingly great advantage of large, charge-diffuse anions to bind to a lipid-embedded synthetic receptor mainly attributed to their higher polarisabilities and deeper penetration into the bilayer, beyond the common knowledge of dehydration energy-governed selectivity. The elucidation of these principles enhances our understanding of biological anion recognition functions in membranes and guides the design of ionophores and molecular machines operating at biomembrane interfaces.


2021 ◽  
Author(s):  
Xin Wu ◽  
Patrick Wang ◽  
William Lewis ◽  
Yun-Bao Jiang ◽  
Philip Alan Gale

Understanding non-covalent molecular recognition events at biomembrane interfaces is important in biological, medicinal, and materials chemistry research.1 Despite the crucial regulatory roles of anion binding/transport processes at biomembranes, no information is available regarding how strongly anions can bind to naturally occurring or synthetic receptors in lipid bilayer environments compared to their well-established behaviour in solutions.2 To bridge this knowledge gap, we synthesised a flat macrocycle that possesses a record aqueous SO42– affinity among neutral receptors and exploited its unique fluorescence response at interfaces. We show that the determinants of anion binding are extraordinarily different in organic solvents and in lipid bilayers. The high charge density of dihydrogen phosphate and chloride ions prevails in DMSO, however in lipids they fail to bind the macrocycle. Perchlorate and iodide hardly bind in DMSO but show significant affinities for the macrocycle in lipids. Our results demonstrate a surprisingly great advantage of large, charge-diffuse anions to bind to a lipid-embedded synthetic receptor mainly attributed to their higher polarisabilities and deeper penetration into the bilayer, beyond the common knowledge of dehydration energy-governed selectivity. The elucidation of these principles enhances our understanding of biological anion recognition functions in membranes and guides the design of ionophores and molecular machines operating at biomembrane interfaces.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 865
Author(s):  
Francesc Xavier Ruiz ◽  
Xavier Parés ◽  
Jaume Farrés

Human aldo-keto reductase 1B10 (AKR1B10) is overexpressed in many cancer types and is involved in chemoresistance. This makes AKR1B10 to be an interesting drug target and thus many enzyme inhibitors have been investigated. High-resolution crystallographic structures of AKR1B10 with various reversible inhibitors were deeply analyzed and compared to those of analogous complexes with aldose reductase (AR). In both enzymes, the active site included an anion-binding pocket and, in some cases, inhibitor binding caused the opening of a transient specificity pocket. Different structural conformers were revealed upon inhibitor binding, emphasizing the importance of the highly variable loops, which participate in the transient opening of additional binding subpockets. Two key differences between AKR1B10 and AR were observed regarding the role of external loops in inhibitor binding. The first corresponded to the alternative conformation of Trp112 (Trp111 in AR). The second difference dealt with loop A mobility, which defined a larger and more loosely packed subpocket in AKR1B10. From this analysis, the general features that a selective AKR1B10 inhibitor should comply with are the following: an anchoring moiety to the anion-binding pocket, keeping Trp112 in its native conformation (AKR1B10-like), and not opening the specificity pocket in AR.


2021 ◽  
Vol 22 (24) ◽  
pp. 13396
Author(s):  
Marta Zaleskaya-Hernik ◽  
Łukasz Dobrzycki ◽  
Marcin Karbarz ◽  
Jan Romański

In contrast to monotopic receptor 3, the anthracene functionalized squaramide dual-host receptor 1 is capable of selectively extracting sulfate salts, as was evidenced unambiguously by DOSY, mass spectrometry, fluorescent and ion chromatography measurements. The receptors were investigated in terms of anion and ion pair binding using the UV–vis and 1H NMR titrations method in acetonitrile. The reference anion receptor 3, lacking a crown ether unit, was found to lose the enhancement in anion binding induced by the presence of cations. Besides the ability to bind anions in an enhanced manner exhibited by ion pair receptors 2 and 4, changing the 1-aminoanthracene substituent resulted in their exhibiting a lower anion affinity than receptor 1. By using receptor 1 and adjusting the water content in organic phase it was possible to selectively detect sulfates both by “turn-off” and “turn-on” fluorescence, and to do so homogenously and under interfacial conditions. Such properties of receptor 1 have allowed the development of a new type of sensor capable of recognizing and extracting potassium sulfate from the aqueous medium across a phase boundary, resulting in an appropriate fluorescent response in the organic solution.


Sign in / Sign up

Export Citation Format

Share Document