Archives of Toxicology
Latest Publications


TOTAL DOCUMENTS

8259
(FIVE YEARS 818)

H-INDEX

117
(FIVE YEARS 14)

Published By Springer-Verlag

1432-0738, 0340-5761

Author(s):  
James W. Firman ◽  
Mark T. D. Cronin ◽  
Philip H. Rowe ◽  
Elizaveta Semenova ◽  
John E. Doe

AbstractThere exists consensus that the traditional means by which safety of chemicals is assessed—namely through reliance upon apical outcomes obtained following in vivo testing—is increasingly unfit for purpose. Whilst efforts in development of suitable alternatives continue, few have achieved levels of robustness required for regulatory acceptance. An array of “new approach methodologies” (NAM) for determining toxic effect, spanning in vitro and in silico spheres, have by now emerged. It has been suggested, intuitively, that combining data obtained from across these sources might serve to enhance overall confidence in derived judgment. This concept may be formalised in the “tiered assessment” approach, whereby evidence gathered through a sequential NAM testing strategy is exploited so to infer the properties of a compound of interest. Our intention has been to provide an illustration of how such a scheme might be developed and applied within a practical setting—adopting for this purpose the endpoint of rat acute oral lethality. Bayesian statistical inference is drawn upon to enable quantification of degree of confidence that a substance might ultimately belong to one of five LD50-associated toxicity categories. Informing this is evidence acquired both from existing in silico and in vitro resources, alongside a purposely-constructed random forest model and structural alert set. Results indicate that the combination of in silico methodologies provides moderately conservative estimations of hazard, conducive for application in safety assessment, and for which levels of certainty are defined. Accordingly, scope for potential extension of approach to further toxicological endpoints is demonstrated.


Author(s):  
Yang Liu ◽  
Yang Lu ◽  
Yu-Hu Jiao ◽  
Da-Wei Li ◽  
Hong-Ye Li ◽  
...  
Keyword(s):  

Author(s):  
Noa Madar-Balakirski ◽  
Amir Rosner ◽  
Sharon Melamed ◽  
Boaz Politi ◽  
Michal Steiner ◽  
...  

Author(s):  
Michael D. Collins ◽  
Elvis Han Cui ◽  
Seung Won Hyun ◽  
Weng Kee Wong

AbstractThe key aim of this paper is to suggest a more quantitative approach to designing a dose–response experiment, and more specifically, a concentration–response experiment. The work proposes a departure from the traditional experimental design to determine a dose–response relationship in a developmental toxicology study. It is proposed that a model-based approach to determine a dose–response relationship can provide the most accurate statistical inference for the underlying parameters of interest, which may be estimating one or more model parameters or pre-specified functions of the model parameters, such as lethal dose, at maximal efficiency. When the design criterion or criteria can be determined at the onset, there are demonstrated efficiency gains using a more carefully selected model-based optimal design as opposed to an ad-hoc empirical design. As an illustration, a model-based approach was theoretically used to construct efficient designs for inference in a developmental toxicity study of sea urchin embryos exposed to trimethoprim. This study compares and contrasts the results obtained using model-based optimal designs versus an ad-hoc empirical design.


Author(s):  
Yi Xiang ◽  
Kathleen Miller ◽  
Jiaao Guan ◽  
Wisarut Kiratitanaporn ◽  
Min Tang ◽  
...  

AbstractThe pharmacology and toxicology of a broad variety of therapies and chemicals have significantly improved with the aid of the increasing in vitro models of complex human tissues. Offering versatile and precise control over the cell population, extracellular matrix (ECM) deposition, dynamic microenvironment, and sophisticated microarchitecture, which is desired for the in vitro modeling of complex tissues, 3D bio-printing is a rapidly growing technology to be employed in the field. In this review, we will discuss the recent advancement of printing techniques and bio-ink sources, which have been spurred on by the increasing demand for modeling tactics and have facilitated the development of the refined tissue models as well as the modeling strategies, followed by a state-of-the-art update on the specialized work on cancer, heart, muscle and liver. In the end, the toxicological modeling strategies, substantial challenges, and future perspectives for 3D printed tissue models were explored.


Author(s):  
Julie Davies ◽  
Petra Siebenhandl-Wolff ◽  
Francois Tranquart ◽  
Paul Jones ◽  
Paul Evans

Author(s):  
Hansruedi Glatt ◽  
Wolfram Engst ◽  
Simone Florian ◽  
Monika Schreiner ◽  
Chimgee Baasanjav-Gerber

AbstractJuices of Brassica vegetables are mutagenic and form characteristic DNA adducts in bacteria and mammalian cells. In this study, we examined whether such adducts are also formed in vivo in animal models. Rats fed raw broccoli ad libitum in addition to normal laboratory chow for 5 weeks showed one major adduct spot and sometimes an additional minor adduct spot in liver, kidney, lung, blood and the gastrointestinal tract, as determined by 32P-postlabelling/thin-layer chromatography. Adducts with the same chromatographic properties were formed when herring sperm DNA (or dG-3’-phosphate) was incubated with 1-methoxy-3-indolylmethyl glucosinolate (phytochemical present in Brassica plants), in the presence of myrosinase (plant enzyme that hydrolyses glucosinolates to bioactive breakdown products). UPLC–MS/MS analysis corroborated this finding: 1-Methoxy-3-indolylmethyl-substituted purine nucleosides were detected in the hepatic DNA of broccoli-fed animals, but not in control animals. Feeding raw cauliflower led to the formation of the same adducts. When steamed rather than raw broccoli was used, the adduct levels were essentially unchanged in liver and jejunum, but elevated in large intestine. Due to inactivation of myrosinase by the steaming, higher levels of the glucosinolates may have reached the large bowl to be activated by glucosidases from intestinal bacteria. In conclusion, the consumption of common Brassica vegetables can lead to the formation of substantial levels of DNA adducts in animal models. The adducts can be attributed to a specific phytochemical, neoglucobrassicin (1-methoxy-3-indolylmethyl glucosinolate).


Sign in / Sign up

Export Citation Format

Share Document