The guanine-nucleotide-exchange factor P-Rex1 is activated by protein phosphatase 1α

2012 ◽  
Vol 443 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Mark A. Barber ◽  
Annick Hendrickx ◽  
Monique Beullens ◽  
Hugo Ceulemans ◽  
David Oxley ◽  
...  

P-Rex1 is a GEF (guanine-nucleotide-exchange factor) for the small G-protein Rac that is activated by PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and Gβγ subunits and inhibited by PKA (protein kinase A). In the present study we show that PP1α (protein phosphatase 1α) binds P-Rex1 through an RVxF-type docking motif. PP1α activates P-Rex1 directly in vitro, both independently of and additively to PIP3 and Gβγ. PP1α also substantially activates P-Rex1 in vivo, both in basal and PDGF (platelet-derived growth factor)- or LPA (lysophosphatidic acid)-stimulated cells. The phosphatase activity of PP1α is required for P-Rex1 activation. PP1β, a close homologue of PP1α, is also able to activate P-Rex1, but less effectively. PP1α stimulates P-Rex1-mediated Rac-dependent changes in endothelial cell morphology. MS analysis of wild-type P-Rex1 and a PP1α-binding-deficient mutant revealed that endogenous PP1α dephosphorylates P-Rex1 on at least three residues, Ser834, Ser1001 and Ser1165. Site-directed mutagenesis of Ser1165 to alanine caused activation of P-Rex1 to a similar degree as did PP1α, confirming Ser1165 as a dephosphorylation site important in regulating P-Rex1 Rac-GEF activity. In summary, we have identified a novel mechanism for direct activation of P-Rex1 through PP1α-dependent dephosphorylation.

1994 ◽  
Vol 14 (12) ◽  
pp. 8117-8122 ◽  
Author(s):  
W Park ◽  
R D Mosteller ◽  
D Broek

Previously we found that negatively charged residues at positions 62, 63, and 69 of H-Ras are involved in binding to the CDC25 guanine nucleotide exchange factor (GEF). Using site-directed mutagenesis, we have changed conserved, positively charged residues of CDC25GEF to glutamic acid. We find the nonfunctional CDC25R1374E mutant and the nonfunctional H-RasE63K mutant cooperate in suppression of the loss of CDC25 function in Saccharomyces cerevisiae. Also, peptides corresponding to residues 1364 to 1383 of CDC25GEF inhibit interaction between GEFs and H-Ras. We propose that residues 1374 of CDC25GEF and 63 of H-Ras form an ion pair and that when this ion pair is reversed, functional interaction can still occur.


2003 ◽  
Vol 14 (1) ◽  
pp. 313-323 ◽  
Author(s):  
Pedro M. Coll ◽  
Yadira Trillo ◽  
Amagoia Ametzazurra ◽  
Pilar Perez

Schizosaccharomyces pombe cdc42+regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1+increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression ofgef1+causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1+deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1Δ scd1Δ is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1+orscd1+causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.


2009 ◽  
Vol 20 (17) ◽  
pp. 3905-3917 ◽  
Author(s):  
Diana L. Ford-Speelman ◽  
Joseph A. Roche ◽  
Amber L. Bowman ◽  
Robert J. Bloch

Obscurin is a large (∼800-kDa), modular protein of striated muscle that concentrates around the M-bands and Z-disks of each sarcomere, where it is well positioned to sense contractile activity. Obscurin contains several signaling domains, including a rho-guanine nucleotide exchange factor (rhoGEF) domain and tandem pleckstrin homology domain, consistent with a role in rho signaling in muscle. We investigated the ability of obscurin's rhoGEF domain to interact with and activate small GTPases. Using a combination of in vitro and in vivo approaches, we found that the rhoGEF domain of obscurin binds selectively to rhoA, and that rhoA colocalizes with obscurin at the M-band in skeletal muscle. Other small GTPases, including rac1 and cdc42, neither associate with the rhoGEF domain of obscurin nor concentrate at the level of the M-bands. Furthermore, overexpression of the rhoGEF domain of obscurin in adult skeletal muscle selectively increases rhoA expression and activity in this tissue. Overexpression of obscurin's rhoGEF domain and its effects on rhoA alter the expression of rho kinase and citron kinase, both of which can be activated by rhoA in other tissues. Injuries to rodent hindlimb muscles caused by large-strain lengthening contractions increases rhoA activity and displaces it from the M-bands to Z-disks, similar to the effects of overexpression of obscurin's rhoGEF domain. Our results suggest that obscurin's rhoGEF domain signals at least in part by inducing rhoA expression and activation, and altering the expression of downstream kinases in vitro and in vivo.


2020 ◽  
Vol 117 (48) ◽  
pp. 30380-30390
Author(s):  
Christopher Lim ◽  
Jason M. Berk ◽  
Alyssa Blaise ◽  
Josie Bircher ◽  
Anthony J. Koleske ◽  
...  

Rho family GTPases regulate an array of cellular processes and are often modulated by pathogens to promote infection. Here, we identify a cryptic guanine nucleotide exchange factor (GEF) domain in the OtDUB protein encoded by the pathogenic bacteriumOrientia tsutsugamushi. A proteomics-based OtDUB interaction screen identified numerous potential host interactors, including the Rho GTPases Rac1 and Cdc42. We discovered a domain in OtDUB with Rac1/Cdc42 GEF activity (OtDUBGEF), with higher activity toward Rac1 in vitro. While this GEF bears no obvious sequence similarity to known GEFs, crystal structures of OtDUBGEFalone (3.0 Å) and complexed with Rac1 (1.7 Å) reveal striking convergent evolution, with a unique topology, on a V-shaped bacterial GEF fold shared with other bacterial GEF domains. Structure-guided mutational analyses identified residues critical for activity and a mechanism for nucleotide displacement. Ectopic expression of OtDUB activates Rac1 preferentially in cells, and expression of the OtDUBGEFalone alters cell morphology. Cumulatively, this work reveals a bacterial GEF within the multifunctional OtDUB that co-opts host Rac1 signaling to induce changes in cytoskeletal structure.


1994 ◽  
Vol 14 (12) ◽  
pp. 8117-8122
Author(s):  
W Park ◽  
R D Mosteller ◽  
D Broek

Previously we found that negatively charged residues at positions 62, 63, and 69 of H-Ras are involved in binding to the CDC25 guanine nucleotide exchange factor (GEF). Using site-directed mutagenesis, we have changed conserved, positively charged residues of CDC25GEF to glutamic acid. We find the nonfunctional CDC25R1374E mutant and the nonfunctional H-RasE63K mutant cooperate in suppression of the loss of CDC25 function in Saccharomyces cerevisiae. Also, peptides corresponding to residues 1364 to 1383 of CDC25GEF inhibit interaction between GEFs and H-Ras. We propose that residues 1374 of CDC25GEF and 63 of H-Ras form an ion pair and that when this ion pair is reversed, functional interaction can still occur.


1997 ◽  
Vol 17 (3) ◽  
pp. 1346-1353 ◽  
Author(s):  
J Han ◽  
B Das ◽  
W Wei ◽  
L Van Aelst ◽  
R D Mosteller ◽  
...  

Vav is a member of a family of oncogene proteins that share an approximately 250-amino-acid motif called a Dbl homology domain. Paradoxically, Dbl itself and other proteins containing a Dbl domain catalyze GTP-GDP exchange for Rho family proteins, whereas Vav has been reported to catalyze GTP-GDP exchange for Ras proteins. We present Saccharomyces cerevisiae genetic data, in vitro biochemical data, and animal cell biological data indicating that Vav is a guanine nucleotide exchange factor for Rho-related proteins, but in similar genetic and biochemical experiments we fail to find evidence that Vav is a guanine nucleotide exchange factor for Ras. Further, we present data indicating that the Lck kinase activates the guanine nucleotide exchange factor and transforming activity of Vav.


2020 ◽  
Author(s):  
Christopher Lim ◽  
Jason M. Berk ◽  
Alyssa Blaise ◽  
Josie Bircher ◽  
Anthony J. Koleske ◽  
...  

AbstractRho family GTPases regulate an array of cellular processes and are often modulated by pathogens to promote infection. Here, we identify a cryptic guanine nucleotide exchange factor (GEF) domain in the OtDUB protein encoded by the pathogenic bacterium Orientia tsutsugamushi. A proteomics-based OtDUB interaction screen identified numerous potential host interactors, including the Rho-GTPases Rac1 and Cdc42. We discovered a new domain in OtDUB with Rac1/Cdc42 GEF activity (OtDUBGEF), with higher activity toward Rac1 in vitro. While this GEF bears no obvious sequence similarity to known GEFs, crystal structures of OtDUBGEF alone (3.0 Å) and complexed with Rac1 (1.7 Å) reveal striking convergent evolution, with a distinct topology, on a V-shaped bacterial GEF fold shared with other bacterial GEF domains. Structure-guided mutational analyses identified residues critical for activity and a novel mechanism for nucleotide displacement. Ectopic expression of OtDUB activates Rac1 preferentially in cells, and expression of the OtDUBGEF alone alters cell morphology. Cumulatively, this work reveals a novel bacterial GEF within the multifunctional OtDUB that co-opts host Rac1 signaling to evoke changes in cytoskeletal structure.


2001 ◽  
Vol 276 (50) ◽  
pp. 46995-47003 ◽  
Author(s):  
Nam Pham ◽  
Daniela Rotin

Cyclic nucleotide ras GEF (CNrasGEF) is a guanine-nucleotide exchange factor previously isolated in a screen for Nedd4-WW domain interacting proteins (Pham, N., Cheglakov, I., Koch, C. A., de Hoog, C. L., Moran, M. F., and Rotin, D. (2000)Curr. Biol.10, 555–558). It activates Ras in a cAMP-dependent manner and Rap-1 independent of cAMP. Here we show that CNrasGEF is a likely substrate of the ubiquitin protein ligase Nedd4. CNrasGEF possesses two PY motifs at its C terminus that are responsible for binding to Nedd4in vitro. Moreover, Nedd4 and CNrasGEF co-immunoprecipitate from 293T cells expressing ectopic CNrasGEF and endogenous Nedd4, and this co-immunoprecipitation is abrogated in PY motif-mutated CNrasGEF (CNrasGEFΔ2PY). CNrasGEF is ubiquitinated in cells, and this ubiquitination is augmented upon overexpression of wt-Nedd4 but is inhibited in cells overexpressing a catalytically inactive Nedd4 (Nedd4(CS)) or in cells expressing CNrasGEFΔ2PY, which cannot bind Nedd4. Moreover, pulse-chase experiments have demonstrated that the half-life of CNrasGEF is reduced 5-fold (from ∼10 to ∼2 h) in cells co-expressing Nedd4 with CNrasGEF but not with CNrasGEFΔ2PY (t0.5∼ 14 h). CNrasGEF is also stabilized in cells co-expressing Nedd4(CS) or following treatment with lactacystin, indicating proteasomal degradation of this protein. Deletion/mutation of the CDC25 domain to abrogate Ras (or Rap-1) binding leads to impaired ubiquitination of CNrasGEF, suggesting that such binding is critical for ubiquitination. Treatment of cells with the cAMP analogue 8-bromo-cAMP does not affect the ability of CNrasGEF to bind Nedd4 nor its level of ubiquitination, suggesting that Ras bindingper seand not its activation is the critical step in triggering ubiquitination of CNrasGEF. These results suggest that CNrasGEF is a substrate for Nedd4, which regulates its ubiquitination and stability in cells.


Sign in / Sign up

Export Citation Format

Share Document