charged residues
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 61)

H-INDEX

55
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Xiangze Zeng ◽  
Kiersten M Ruff ◽  
Rohit V Pappu

The most commonly occurring intrinsically disordered proteins (IDPs) are polyampholytes, which are defined by the duality of low net charge per residue and high fractions of charged residues. Recent experiments have uncovered surprises regarding sequence-ensemble relationships of model polyampholytic IDPs. These include differences in conformational preferences for sequences with lysine vs. arginine, and the suggestion that well-mixed sequences either form globules or conformations with ensemble averages that are reminiscent of ideal chains wherein intra-chain and chain-solvent interactions are counterbalanced. Here, we explain these observations by analyzing results from atomistic simulations. We find that polyampholytic IDPs generally sample two distinct stable states, namely globules and self-avoiding walks. Globules are favored by electrostatic attractions between oppositely charged residues, whereas self-avoiding walks are favored by favorable free energies of hydration of charged residues. We find sequence-specific temperatures of bistability at which globules and self-avoiding walks can coexist. At these temperatures, ensemble averages over coexisting states give rise to statistics that resemble ideal chains without there being an actual counterbalancing of intra-chain and chain-solvent interactions. At equivalent temperatures, arginine-rich sequences tilt the preference toward globular conformations whereas lysine-rich sequences tilt the preference toward self-avoiding walks. This stems from intrinsic differences in free energies of hydration between arginine and lysine. We also identify differences between aspartate and glutamate containing sequences, whereby the shorter aspartate sidechain engenders preferences for metastable, necklace-like conformations. Finally, although segregation of oppositely charged residues within the linear sequence maintains the overall two-state behavior, compact states are highly favored by such systems.


Biochemistry ◽  
2022 ◽  
Author(s):  
Sarah E. Leininger ◽  
Judith Rodriguez ◽  
Quyen V. Vu ◽  
Yang Jiang ◽  
Mai Suan Li ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Alexandra Tran-Van-Minh ◽  
Michel De Waard ◽  
Norbert Weiss

AbstractVoltage-gated calcium channels are essential regulators of brain function where they support depolarization-induced calcium entry into neurons. They consist of a pore-forming subunit (Cavα1) that requires co-assembly with ancillary subunits to ensure proper functioning of the channel. Among these ancillary subunits, the Cavβ plays an essential role in regulating surface expression and gating of the channels. This regulation requires the direct binding of Cavβ onto Cavα1 and is mediated by the alpha interacting domain (AID) within the Cavα1 subunit and the α binding pocket (ABP) within the Cavβ subunit. However, additional interactions between Cavα1 and Cavβ have been proposed. In this study, we analyzed the importance of Cavβ3 surface charged residues in the regulation of Cav2.1 channels. Using alanine-scanning mutagenesis combined with electrophysiological recordings we identified several amino acids within the Cavβ3 subunit that contribute to the gating of the channel. These findings add to the notion that additional contacts besides the main AID/ABP interaction may occur to fine-tune the expression and properties of the channel.


2021 ◽  
Author(s):  
Alex L. Lai ◽  
Jack H. Freed

AbstractCoronaviruses are a major infectious disease threat, and include the human pathogens of zoonotic origin SARS-CoV (“SARS-1”), SARS-CoV-2 (“SARS-2”) and MERS-CoV (“MERS”). Entry of coronaviruses into host cells is mediated by the viral spike (S) protein. Previously, we identified that the domain immediately downstream of the S2’ cleavage site is the bona fide FP (amino acids 798-835) for SARS-1 using ESR spectroscopy technology. We also found that the SARS-1 FP induces membrane ordering in a Ca2+ dependent fashion. In this study, we want to know which residues are involved in this Ca2+ binding, to build a topological model and to understand the role of the Ca2+. We performed a systematic mutation study on the negatively charged residues on the SARS-1 FP. While all six negatively charged residues contributes to the membrane ordering activity of the FP to some extent, D812 is the most important residue. We provided a topological model of how the FP binds Ca2+ ions: both FP1 and FP2 bind one Ca2+ ion, and there are two binding sites in FP1 and three in FP2. We also found that the corresponding residue D830 in the SARS-2 FP plays a similar critical role. ITC experiments show that the binding energies between the FP and Ca2+ as well as between the FP and membranes also decreases for all mutants. The binding of Ca2+, the folding of FP and the ordering activity correlated very well across the mutants, suggesting that the function of the Ca2+ is to help to folding of FP in membranes to enhance its activity. Using a novel pseudotyped virus particle (PP)-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole S proteins in its trimer form in real time. We found that the SARS-1 and SARS-2 PPs also induce membrane ordering as the separate FPs do, and the mutations of the negatively charged residues also greatly reduce the membrane ordering activity. However, the difference in kinetic between the PP and FP indicates a possible role of FP trimerization. This finding could lead to therapeutic solutions that either target the FP-calcium interaction or block the Ca2+ channel to combat the ongoing COVID-19 pandemic.


2021 ◽  
Vol 22 (20) ◽  
pp. 11058
Author(s):  
Ellen Rieloff ◽  
Marie Skepö

Intrinsically disordered proteins are involved in many biological processes such as signaling, regulation, and recognition. A common strategy to regulate their function is through phosphorylation, as it can induce changes in conformation, dynamics, and interactions with binding partners. Although phosphorylated intrinsically disordered proteins have received increased attention in recent years, a full understanding of the conformational and structural implications of phosphorylation has not yet been achieved. Here, we present all-atom molecular dynamics simulations of five disordered peptides originated from tau, statherin, and β-casein, in both phosphorylated and non-phosphorylated state, to compare changes in global dimensions and structural elements, in an attempt to gain more insight into the controlling factors. The changes are in qualitative agreement with experimental data, and we observe that the net charge is not enough to predict the impact of phosphorylation on the global dimensions. Instead, the distribution of phosphorylated and positively charged residues throughout the sequence has great impact due to the formation of salt bridges. In statherin, a preference for arginine–phosphoserine interaction over arginine–tyrosine accounts for a global expansion, despite a local contraction of the phosphorylated region, which implies that also non-charged residues can influence the effect of phosphorylation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshihiko Utsumi ◽  
Takuro Hosokawa ◽  
Mayu Shichita ◽  
Misato Nishiue ◽  
Natsuko Iwamoto ◽  
...  

AbstractThe membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.


2021 ◽  
pp. mbc.E21-04-0161 ◽  
Author(s):  
Mohaddeseh Peyro ◽  
Andrew M. Dickson ◽  
Mohammad R. K. Mofrad

Nucleocytoplasmic transport is a vital cellular process yet to be fully understood. Among several elements that are involved in the transport process, FG Nups are the major role players. We observed that specific sequence features (called like-charge regions, or lpLCRs), namely the extended sub-sequences that only possess positively charged amino acids, significantly affect the conformation of FG Nups inside the NPC. Here we investigate how the presence of lpLCRs affects the interactions between FG Nups and their interactions with cargo complex. We combined coarse-grained molecular dynamics simulations with time-resolved force distribution analysis to disordered proteins to explore the behavior of the system. Our results suggest that the number of charged residues in the lpLCR domain directly governs the average distance between Phe residues and the intensity of interaction between them. As a result, the number of charged residues within and lpLCR determines the balance between the hydrophobic interaction and electrostatic repulsion and governs how disordered the hydrophobic network formed by FG Nups. Moreover, changing the number of charged residues in an lpLCR domain can interfere with ultrafast and transient interactions between FG Nups and cargo complex. [Media: see text] [Media: see text] [Media: see text]


2021 ◽  
Author(s):  
Sarah E Leininger ◽  
Judith Rodriguez ◽  
Quyen V Vu ◽  
Yang Jiang ◽  
Ma Suan Li ◽  
...  

The speed of protein synthesis can dramatically change when consecutively charged residues are incorporated into an elongating nascent protein by the ribosome. The molecular origins of this class of allosteric coupling remain unknown. We demonstrate, using multi-scale simulations, that positively charged residues generate large forces that pull the P-site amino acid away from the A-site amino acid. Negatively charged residues generate forces of similar magnitude but opposite direction. And that these conformational changes, respectively, raise and lower the transition state barrier height to peptide bond formation, explaining how charged residues mechanochemically alter translation speed. This mechanochemical mechanism is consistent with in vivo ribosome profiling data exhibiting a proportionality between translation speed and the number of charged residues, experimental data characterizing nascent chain conformations, and a previously published cryo-EM structure of a ribosome-nascent chain complex containing consecutive lysines. These results expand the role of mechanochemistry in translation, and provide a framework for interpreting experimental results on translation speed.


Physchem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 152-162
Author(s):  
Miquel Pons

A large number of peripheral membrane proteins transiently interact with lipids through a combination of weak interactions. Among them, electrostatic interactions of clusters of positively charged amino acid residues with negatively charged lipids play an important role. Clusters of charged residues are often found in intrinsically disordered protein regions, which are highly abundant in the vicinity of the membrane forming what has been called the disordered boundary of the cell. Beyond contributing to the stability of the lipid-bound state, the pattern of charged residues may encode specific interactions or properties that form the basis of cell signaling. The element of this code may include, among others, the recognition, clustering, and selective release of phosphatidyl inositides, lipid-mediated protein-protein interactions changing the residence time of the peripheral membrane proteins or driving their approximation to integral membrane proteins. Boundary effects include reduction of dimensionality, protein reorientation, biassing of the conformational ensemble of disordered regions or enhanced 2D diffusion in the peri-membrane region enabled by the fuzzy character of the electrostatic interactions with an extended lipid membrane.


Sign in / Sign up

Export Citation Format

Share Document