Thermal history and exhumation of the Northern Apennines (Italy): evidence from combined apatite fission track and vitrinite reflectance data from foreland basin sediments

2001 ◽  
Vol 13 (4) ◽  
pp. 435-448 ◽  
Author(s):  
B. Ventura ◽  
G. A. Pini ◽  
G. G. Zuffa
2021 ◽  
Author(s):  
Erica D. Erlanger ◽  
Maria Giuditta Fellin ◽  
Sean D. Willett

Abstract. Analysis of new detrital apatite fission-track (AFT) ages from modern river sands, published bedrock and detrital AFT ages, and bedrock apatite (U-Th)/He (AHe) ages from the Northern Apennines provide new insights into the spatial and temporal pattern of erosion rates through time across the orogen. The pattern of time-averaged erosion rates derived from AHe ages from the Ligurian side of the orogen illustrates slower erosion rates relative to AFT rates from the Ligurian side and relative to AHe rates from the Adriatic side. These results are corroborated by an analysis of paired AFT and AHe thermochronometer samples, which illustrate that erosion rates have generally increased through time on the Adriatic side, but decreased through time on the Ligurian side. Using an updated kinematic model of an asymmetric orogenic wedge, with imposed erosion rates on the Ligurian side that are a factor of two slower relative to the Adriatic side, we demonstrate that cooling ages and maximum burial depths are able to replicate the pattern of measured cooling ages across the orogen and estimates of burial depth from vitrinite reflectance data. These results suggest that horizontal motion is an important component of the overall rock motion in the wedge, and that the asymmetry of the orogen has existed for at least several million years.


AAPG Bulletin ◽  
2021 ◽  
Vol 105 (5) ◽  
pp. 919-944
Author(s):  
Lirong Dou ◽  
Renchong Wang ◽  
Jingchun Wang ◽  
Dingsheng Cheng ◽  
Paul F. Green ◽  
...  

1992 ◽  
Vol 29 (5) ◽  
pp. 909-924 ◽  
Author(s):  
A. M. Grist ◽  
P. H. Reynolds ◽  
M. Zentilli ◽  
C. Beaumont

Apatite fission track and 40Ar/39Ar age spectrum data from sandstone drill-core minerals taken from depths of 2–5 km in nine wells from the Scotian Basin are presented and interpreted in terms of the thermal history of the basin and the provenance of its sediments. The focus of the study is a comparison of the data from these thermochronometers with each other and with previously published vitrinite reflectance and aromatization–isomerization (A–I) reactions in biomarker compounds from the same or nearby wells.Apatite fission track ages are generally in agreement with expectations in that they trend to zero at a depth of ~4 km (corrected bottom-hole temperature ~120 °C). Shallower (lower present temperature) samples are partially annealed; the degree of partial annealing correlates closely with the degree of A–I reactions. Both thermal indicators are activated over the temperature range 60–120 °C.Samples from two wells, Mic Mac J-77 and Erie D-26, are anomalous. They are more annealed than present formation temperatures would predict, an anomaly that is also indicated by the A–I data. These samples are interpreted as having experienced higher than present temperatures subsequent to deposition, possibly resulting from the passage of hot fluids related to localized volcanism or the sudden venting of an overpressured reservoir.K-feldspars record minor (< 20%) argon loss as a result of burial heating in the basin only at the greatest depths of the sampled range (> 4.3 km). This result is in agreement with the thermal models of the Scotian Basin and extrapolation of the A–I and fission track data to greater depths. The inferred argon loss implies an activation energy of 40 ± 4 kcal/mol for the smallest diffusion domains.The argon age spectra for samples that have not lost argon during residence in the basin provide evidence on the provenance of the sediments. K-feldspars from the Early Cretaceous Missisauga Formation have spectra that are similar to those obtained from K-feldspars from the Grenville Province of the Canadian Shield, whereas muscovites from the same formation give Cambrian to Carboniferous argon ages (mean 387 Ma), an indication of contributions from other source rocks. Corresponding data from the Jurassic Mohican Formation are similar to those reported for plutons from the southern Nova Scotia mainland (ca. 250–350 Ma argon ages). By implication, the Mohican Formation, which is the earliest postrift deposit, was derived from local sources inferred to be adjacent flank uplifts, whereas the Missisauga Formation was derived in part either directly or indirectly from the Grenvillian-aged interior of eastern Canada.


Sign in / Sign up

Export Citation Format

Share Document