apatite fission track
Recently Published Documents


TOTAL DOCUMENTS

683
(FIVE YEARS 112)

H-INDEX

55
(FIVE YEARS 6)

Author(s):  
Cristina Noemi Guibaldo ◽  
Sofia Bordese ◽  
Mario Ignacio Simoy

This work presents the apatite fission track (AFT) age and multielement analysis of four samples performed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The central ages calculated range between 15.4...


2021 ◽  
Vol 9 ◽  
Author(s):  
Dongliang Liu ◽  
Haibing Li ◽  
Chenglong Ge ◽  
Mingkun Bai ◽  
Yadong Wang ◽  
...  

The Cenozoic collision between India and Asia promoted the widespread uplift of the Tibetan Plateau, with significant deformation documented in the Pamir Plateau and West Kunlun Mountains. Low-temperature thermochronology and basin provenance analysis have revealed three episodes of rapid deformation and uplift in the Pamir–West Kunlun Mountains during the Cenozoic. However, there is very little low-temperature thermochronology age–elevation relationship (AER) data on fast exhumation events in this area—especially in the West Kunlun Mountains— leading to uncertainty surrounding how these events propagated within and around the mountain range. In this study, we produced an elevation profile across granite located south of Kudi, Xijiang Province, China, to reveal its exhumation history. Apatite fission track AER data show that a rapid exhumation event occurred at ∼26 Ma in the southern West Kunlun Mountains. When combined with published data, we interpret that the initial uplift events related to the India–Asia collision began in the central Pamir, southern West Kunlun, and northern West Kunlun regions during the Late Eocene, Oligocene, and Middle Miocene periods, respectively. Therefore, the Cenozoic northward growth process occurred from south to north around West Kunlun.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pengju He ◽  
Chunhui Song ◽  
Yadong Wang ◽  
Yihu Zhang ◽  
Wenqi Chen ◽  
...  

The Cenozoic tectonic evolution of the North Qaidam-Qilian Shan fold-thrust belt in the northern Tibetan Plateau is important to understanding the tectonic rejuvenation of orogeny and growth of the plateau. However, the deformation processes in this region remain controversial. This study presents new apatite fission track (AFT) data from Paleogene strata in the northern Qaidam Basin to investigate the time of deformation in this site. Thermal modeling of these partially annealed detrital AFT ages shows a thermal history with a noticeable transition from heating to cooling after ∼10 Ma. This transition is attributed to the intensified thrusting and folding of the northern Qaidam Basin since ∼10 Ma. Integrated with published tectonics and thermochronology results, we suggest the North Qaidam-Qilian Shan fold-thrust belt experienced prevailing tectonism since the late Miocene.


2021 ◽  
Author(s):  
◽  
Ruohong Jiao

<p>The basement rocks of North Island, New Zealand, comprise metasedimentary terranes that were accreted onto the eastern Gondwana margin during Mesozoic subduction. Since the Oligocene, these terranes have been sitting at the leading edge of the Australian Plate, as the hanging wall of the Hikurangi subduction margin, overriding the subducting Pacific Plate. This thesis examines the thermo-tectonic histories of the basement rocks in North Island, using fission-track and (U-Th-Sm)/He thermochronology.  In eastern North Island, thermochronological data from the basement rocks record the exhumation histories since the latest Jurassic, related to two subduction cycles. Zircon fission-track analysis yields detrital or slightly reset ages (264–102 Ma); apatite fission-track ages range from 122 to 7.9 Ma and (U-Th-Sm)/He from 33.3 to 6.0 Ma.  In central North Island, modelled thermal histories suggest that the basement rocks were exhumed to shallow levels (<2 km) of the crust in the Early Cretaceous (~150–135 Ma). This was followed by a period of reheating until ~100 Ma, which is interpreted to be the result of burial by sedimentation above the accretionary wedge. From 100 Ma, models indicate thermo-tectonic quiescence until the Late Oligocene.  During the late Cenozoic, exhumation of the basement rocks accelerated at ~27 Ma in the western margin of the axial ranges (Kaimanawa Mountains). This acceleration in exhumation rate is interpreted to reflect the initiation of the subduction of the Pacific Plate beneath central North Island. Since the Late Oligocene, basement exhumation in the axial ranges migrated towards the trough. Modelled thermal histories indicate significant eastwards reverse faulting on the margin-parallel Ngamatea Fault between ~27 and 20 Ma and on the Wellington-Mohaka Fault between ~20 and 10 Ma.  In contrast to the activity in the axial ranges, in western North Island, the exhumational response of the basement rocks to the Cenozoic subduction was less significant and not revealed from the present thermochronological data.  Since the Late Miocene, the exhumation rate in the axial ranges has varied significantly along-strike, lower in the centre and higher to the north and south. During the last 10 Myr, the total magnitude of exhumation has been ~4 km in the Wellington region in the south, >1 km in the Raukumara Range in the north and negligible (less than a few hundred metres) in the central axial ranges in the Hawke’s Bay region. Although the accumulation of underplated material at the basal upper plate may have contributed to the localised rock uplift and exhumation (e.g. in the Raukumara Range), margin-normal shortening of the upper plate in the forearc of the Hikurangi Margin has most likely dominated the unroofing process of the axial ranges.  In northwestern North Island, the Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto in situ Mesozoic and early Cenozoic rocks. Detrital zircon and apatite fission-track ages reveal that the basal Northland Allochthon sequences and the underlying Miocene autochthonous sedimentary rocks were predominantly derived from the local Jurassic terrane (Waipapa Supergrop) and perhaps the Late Cretaceous volcanics. In addition, the Early Miocene autochthon contains significant sedimentary influx from the Late Oligocene volcanics related to the subduction initiation in northern New Zealand.  Zircon and apatite fission-track data from the in situ Mesozoic basement were inverted using thermo-kinematic models coupled with an inversion algorithm. The results suggest that during the Late Oligocene, ~4–6 km thick nappes were emplaced onto the in situ rocks in the northernmost Northland region. Prior to basement unroofing in the Early Miocene, the nappes thinned towards the south. Following allochthon emplacement, eastern Northland was uplifted and unroofed rapidly over a period of ~1–6 Myr, leading to ~0.4–1.5 km erosion of the allochthon. Since the mid-Miocene, due to the decline in tectonic activity in this region, the Northland Allochthon and the underlying rocks have been eroded slowly.  This thesis has documented variable exhumation and burial processes that occurred in the upper plates of both the Mesozoic Gondwana and late Cenozoic Hikurangi subduction margins. The results provide the foundation for future studies to investigate the kinematics and mechanism of the crustal exhumation and deformation of the North Island basement in further detail.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Tao Tian ◽  
Peng Yang ◽  
Jianming Yao ◽  
Zhonghui Duan ◽  
Zhanli Ren ◽  
...  

The Micangshan-Dabashan tectonic belt, located in the southern Qinling-Dabie Orogen near the northeastern Tibetan Plateau, is a crucial area for understanding the processes and mechanisms of orogenesis. Previous studies have been focused on the cooling process via thermochronology and the mechanism and process of basement uplift have been investigated. However, the coupling process of basement exhumation and sedimentary cap cooling is unclear. The tectono-thermal history constrained by the detrital apatite fission track (AFT) results could provide valuable information for understanding crustal evolution and the coupling process. In this study, we provided new detrital AFT thermochronology results from the Micangshan-Dabashan tectonic belt and obtained nine high-quality tectono-thermal models revealing the Meso-Cenozoic cooling histories. The AFT ages and lengths suggest that the cooling events in the Micangshan area were gradual from north (N) to south (S) and different uplift occurred on both sides of Micangshan massif. The cooling in Dabashan tectonic zone was gradual from northeast (NS) to southwest (SW). The thermal histories show that a relatively rapid cooling since ca. 160 Ma occurred in the Micangshan-Dabashan tectonic belt, which was a response to the event of Qinling orogenic belt entered the intracontinental orogenic deformation. This cooling event may relate to the northeastward dextral compression of the Yangtze Block. The sedimentary cap of Cambriano-Ordovician strata responded positively to this rapid cooling event and entered the PAZ since ca. 63 Ma. The deep buried samples may be limited affected by climate and water erosion and the accelerated cooling was not obvious in the Late Cenozoic. Collectively, the cooling processes of basement and sedimentary cap in Micangshan-Dabashan tectonic belt were inconsistent. The uplift of the sedimentary area is not completely consistent with that of the basement under thrust and nappe action. The rigid basement was not always continuous and rapidly uplifted or mainly showed as lateral migration in a certain stage because of the different intensities and modes of thrust and nappe action, and the plastic sedimentary strata rapidly uplifted due to intense folding deformation.


2021 ◽  
Author(s):  
◽  
Ruohong Jiao

<p>The basement rocks of North Island, New Zealand, comprise metasedimentary terranes that were accreted onto the eastern Gondwana margin during Mesozoic subduction. Since the Oligocene, these terranes have been sitting at the leading edge of the Australian Plate, as the hanging wall of the Hikurangi subduction margin, overriding the subducting Pacific Plate. This thesis examines the thermo-tectonic histories of the basement rocks in North Island, using fission-track and (U-Th-Sm)/He thermochronology.  In eastern North Island, thermochronological data from the basement rocks record the exhumation histories since the latest Jurassic, related to two subduction cycles. Zircon fission-track analysis yields detrital or slightly reset ages (264–102 Ma); apatite fission-track ages range from 122 to 7.9 Ma and (U-Th-Sm)/He from 33.3 to 6.0 Ma.  In central North Island, modelled thermal histories suggest that the basement rocks were exhumed to shallow levels (<2 km) of the crust in the Early Cretaceous (~150–135 Ma). This was followed by a period of reheating until ~100 Ma, which is interpreted to be the result of burial by sedimentation above the accretionary wedge. From 100 Ma, models indicate thermo-tectonic quiescence until the Late Oligocene.  During the late Cenozoic, exhumation of the basement rocks accelerated at ~27 Ma in the western margin of the axial ranges (Kaimanawa Mountains). This acceleration in exhumation rate is interpreted to reflect the initiation of the subduction of the Pacific Plate beneath central North Island. Since the Late Oligocene, basement exhumation in the axial ranges migrated towards the trough. Modelled thermal histories indicate significant eastwards reverse faulting on the margin-parallel Ngamatea Fault between ~27 and 20 Ma and on the Wellington-Mohaka Fault between ~20 and 10 Ma.  In contrast to the activity in the axial ranges, in western North Island, the exhumational response of the basement rocks to the Cenozoic subduction was less significant and not revealed from the present thermochronological data.  Since the Late Miocene, the exhumation rate in the axial ranges has varied significantly along-strike, lower in the centre and higher to the north and south. During the last 10 Myr, the total magnitude of exhumation has been ~4 km in the Wellington region in the south, >1 km in the Raukumara Range in the north and negligible (less than a few hundred metres) in the central axial ranges in the Hawke’s Bay region. Although the accumulation of underplated material at the basal upper plate may have contributed to the localised rock uplift and exhumation (e.g. in the Raukumara Range), margin-normal shortening of the upper plate in the forearc of the Hikurangi Margin has most likely dominated the unroofing process of the axial ranges.  In northwestern North Island, the Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto in situ Mesozoic and early Cenozoic rocks. Detrital zircon and apatite fission-track ages reveal that the basal Northland Allochthon sequences and the underlying Miocene autochthonous sedimentary rocks were predominantly derived from the local Jurassic terrane (Waipapa Supergrop) and perhaps the Late Cretaceous volcanics. In addition, the Early Miocene autochthon contains significant sedimentary influx from the Late Oligocene volcanics related to the subduction initiation in northern New Zealand.  Zircon and apatite fission-track data from the in situ Mesozoic basement were inverted using thermo-kinematic models coupled with an inversion algorithm. The results suggest that during the Late Oligocene, ~4–6 km thick nappes were emplaced onto the in situ rocks in the northernmost Northland region. Prior to basement unroofing in the Early Miocene, the nappes thinned towards the south. Following allochthon emplacement, eastern Northland was uplifted and unroofed rapidly over a period of ~1–6 Myr, leading to ~0.4–1.5 km erosion of the allochthon. Since the mid-Miocene, due to the decline in tectonic activity in this region, the Northland Allochthon and the underlying rocks have been eroded slowly.  This thesis has documented variable exhumation and burial processes that occurred in the upper plates of both the Mesozoic Gondwana and late Cenozoic Hikurangi subduction margins. The results provide the foundation for future studies to investigate the kinematics and mechanism of the crustal exhumation and deformation of the North Island basement in further detail.</p>


Sign in / Sign up

Export Citation Format

Share Document