source rocks
Recently Published Documents


TOTAL DOCUMENTS

3173
(FIVE YEARS 889)

H-INDEX

62
(FIVE YEARS 10)

2022 ◽  
pp. 1-42
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Feng Liu ◽  
Qisheng Zhou ◽  
Yue Zhao ◽  
...  

In natural environments, organic-clay interactions are strong and cause organo-clay composites (a combination between organic matter [OM] and clay minerals) to be one of the predominant forms for OM occurrence, and their interactions greatly influence the hydrocarbon (HC) generation of OM within source rocks. However, despite occurring in nature, dominating the OM occurrence, and having unique HC generation ways, organo-clay composites have rarely been investigated as stand-alone petroleum precursors. To improve this understanding, we have compared the Rock-Eval pyrolysis parameters derived from more than 100 source rocks and their corresponding <2 μm clay-sized fractions (representing organo-clay composites). The results show that all of the Rock-Eval pyrolysis parameters in bulk rocks are closely positively correlated with those in their clay-sized fractions, but in clay-sized fractions the quality of OM for HC generation is poorer, in that the pyrolysable organic carbon levels and hydrogen index values are lower, whereas the residual organic carbon levels are higher than those in bulk rocks. Being integrated with the effects of organic-clay interactions on OM occurrence and HC generation, our results suggest that organo-clay composites are stand-alone petroleum precursors for HC generation occurring in source rocks, even if the source rocks exist in great varieties in their attributes. Our source material for HC generation comprehensively integrates the original OM occurrence and HC generation behavior in natural environments, which differs from kerogen and is much closer to the actual source material of HC generation in source rocks, and it calls for further focus on organic-mineral interactions in studies of petroleum systems.


2022 ◽  
Vol 9 ◽  
Author(s):  
Tengfei Zhou ◽  
Yaoqi Zhou ◽  
Hanjie Zhao ◽  
Manjie Li ◽  
Hongyu Mu

A suite of source rock consists of mudstone and shale, with great thickness and continuous deposition was found in the well LK-1 in Lingshan island in Ri-Qing-Wei basin. In order to evaluate the hydrocarbon generation prospects of these source rock and find the mechanism of organic matter enrichment, shale samples were selected from the core for TOC (total organic carbon) and element geochemistry analysis. The results show that organic matter abundance of the source rocks are generally high with average TOC content of 1.26 wt%, suggesting they are good source rocks. The geochemical features show that the sedimentary environment is mostly anoxic brackish water to salt water environment with arid to semiarid climate condition. The enrichment mechanism of organic matter varied with the evolution of the basin, which was divided into three stages according to the sedimentary characteristics. In the initial-middle period of rifting evolution (stage 1 and early stage 2), paleoproductivity is the major factor of OM-enrichment reflecting by high positive correlation between the TOC contents and paleoproductivity proxies. While with the evolution of the rift basin, redox condition and terrigenous clastic input became more and more important until they became the major factor of OM enrichment in the middle stage of rift evolution (stage 2). In the later stage of rift evolution (latest stage 2 and stage 3), besides terrigenous clastic input, the effect of paleoclimate on OM-enrichment increased gradually from a minor factor to a major factor.


2022 ◽  
Author(s):  
Ravi Jonnalagadda ◽  
Ram Raj Mathur

Abstract Geophysical methods have extensively been used in exploration of Lamproite bodies. Lamproites are significant source rocks of primary diamond deposits other than Kimberlites. The Eastern Dharwar Craton is unique in the way that it hosts numerous Precambrian Lamproites confined to the crescent-shaped Paleo-Mesoproterozoic Cuddapah Basin and its north-western and north-eastern margins. In the present study electrical method was used as a tool for delineation of Lamproite bodies in contrast with country rocks in Gundrapally, Vattikode and Marepally regions in parts of the North Eastern Dharwar Craton in Telangana State, India. The electrical profiling method was conducted in different direction to identify the variation of the lithology of the area due to the anisotropic nature and smaller size of the 2-D intrusive bodies adopting the Wenner electrode configuration. The electrical properties of the Lamproites tended to change with their composition due to weathering and the presence of Olivine and K-Al rich composition. The electrical response on the Lamproite pipes is shows a decrease in resistivity concerning the country-rock in the area.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
L. Zhang ◽  
Q. Zhao ◽  
C. Wu ◽  
Z. Qiu ◽  
Q. Zhang ◽  
...  

In the Ordos Basin, multiple sets of coal seams, organic-rich shale, and limestone are well developed in the Permian Taiyuan Formation, which are favorable targets for collaborative exploration of various types of unconventional natural gas resources, including coalbed methane, shale gas, and tight gas. In this study, core samples from the Permian Taiyuan Formation in the eastern margin of the Ordos Basin were used to carry out a series of testing and analysis, such as the organic matter characteristics, the mineral composition, and the pore development characteristics. In the shale of the Taiyuan Formation, the total organic carbon (TOC) content is relatively high, with an average of 5.38%. A thin layer of black shale is developed on the top of the Taiyuan Formation, which is relatively high in TOC content, with an average of 9.72%. The limestone in the Taiyuan Formation is also relatively high in organic matter abundance, with an average of 1.36%, reaching the lower limit of effective source rocks (>1%), being good source rocks. In the shale of the Taiyuan Formation, various types of pores are well developed, with relatively high overall pore volume and pore-specific surface area, averaging 0.028 ml/g and 13.28 m2/g, respectively. The pore types are mainly mineral intergranular pores and clay mineral interlayer fractures, while organic matter-hosted pores are poorly developed. The limestone of the Taiyuan Formation is relatively tight, with lower pore volume and pore-specific surface area than those of shale, averaging 0.0106 ml/g and 2.72 m2/g, respectively. There are mainly two types of pores, namely, organic matter-hosted pores and carbonate mineral dissolution pores, with a high surface pore rate. The organic matter in the limestone belongs to the oil-generation kerogen. During thermal evolution, the organic matter has gone through the oil-generation window, generating a large number of liquid hydrocarbons, which were cracked into a large number of gaseous hydrocarbons at the higher mature stage. As a result, a large number of organic matter-hosted pores were generated. The study results show that in the Ordos Basin, the shale and limestone of the Permian Taiyuan Formation have great potential in terms of unconventional natural gas resources, providing a good geological basis for the collaborative development of coal-bearing shale gas and tight limestone gas in the Taiyuan Formation.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Meihua Yang ◽  
Yinhui Zuo ◽  
Xiaodong Fu ◽  
Lei Qiu ◽  
Wenzheng Li ◽  
...  

The quality of hydrocarbon source rocks is affected by the sedimentary paleoenvironment. A paleoenvironment with anoxia and a high paleoproductivity is beneficial to source rocks. The paleoenvironment of the Lower Ordovician Meitan Formation of the Sichuan Basin and its adjacent areas is lacking, restricting the oil and gas exploration of the Ordovician in the Sichuan Basin and its adjacent areas. In this paper, the content of major and trace elements of 50 samples was tested to clarify the paleoenvironment of the Meitan Formation. The paleoclimate, paleosalinity, paleoredox, and paleoproductivity during the deposition of the Meitan Formation were analyzed. The control effect of the paleoenvironment on the development of source rocks was clarified, and the favorable paleoenvironment for source rock development was pointed out. The results show that the paleoenvironment of the Meitan Formation has the following characteristics: humidity, brackish water, oxygen depletion, anoxia environment, and high paleoproductivity. These characteristics are conducive to the development of poor and moderate source rocks. The source rocks of the Meitan Formation were developed in the north, west, and south of the Sichuan Basin and its adjacent areas. The organic matter of the source rocks is mainly typed II1 kerogen, and the quality is evaluated as poor-medium source rocks having the potential of generating oil and gas. This study can provide fundamental parameters for the further exploration of Ordovician petroleum.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanyan Peng ◽  
Chunfang Cai ◽  
Chenchen Fang ◽  
Liangliang Wu ◽  
Jinzhong Liu ◽  
...  

AbstractDiamondoid compounds are widely used to reflect thermal maturation of high mature source rocks or oils and oil cracking extents. However, diamondoids and thiadiamondoids were demonstrated to have newly been generated and decomposed in our hydrothermal pyrolysis of crude oil and TSR experiments. Our results show that adamantanes and diamantanes are generated primarily within the maturity range 0.48–2.1% and 1.2–3.0% EasyRo, respectively. Their formation is enhanced and the decomposition of diamantanes obviously lags at elevated temperatures compared with anhydrous experiments. MDI, EAI, DMAI-1, DMDI-2 may serve as reliable maturity proxies at > ca.1.0% EasyRo, and other isomerization indices (TMAI-1, TMAI-2 and DMAI-2) are effective for the highly mature organic matter at EasyRo > 2.0%. The extent of oil cracking (EOC) calculated from the broadly used (3- + 4-) MD method (Dahl et al. in Nature 399:54–56, 1999) is proven to overestimate, especially for highly cracked samples due to the new generation of (3- + 4-) MD. Still, it can be corrected using a new formula at < 3.0% EasyRo. Other diamondoid-related indices (e.g., EAI, DMDI-2, As/Ds, MAs/MDs, DMAs/DMDs, and DMAs/MDs) can also be used to estimate EOC. However, these indices cannot be applied to TSR-altered petroleum. TSR is experimentally confirmed to generate diamantanes and thiaadmantanes at 1.81% EasyRo likely via direct reactions of reduced S species with hydrocarbons and accelerate the decomposition of diamantanes at > 2.62% EasyRo compared with thermal chemical alteration (TCA). More studies are needed to assess specific mechanisms for the formation of thiadiamondoids under natural conditions.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Yunpeng Shan ◽  
Hongjun Wang ◽  
Liangjie Zhang ◽  
Penghui Su ◽  
Muwei Cheng ◽  
...  

In order to provide paleofluid evidence of hydrocarbon accumulation periods in the Amu Darya Right Bank Block, microexperiments and simulations related to the Middle-Upper Jurassic Callovian-Oxfordian carbonate reservoirs were performed. On the basis of petrographic observation, the diagenetic stages were divided by cathodoluminescence, and the entrapment stages of fluid inclusions were divided by laser Raman experiment and UV epifluorescence. The hydrocarbon generation (expulsion) curve and burial (thermal) history curve of source rocks were simulated by using real drilling data coupled with geochemical parameters of source rocks, such as total organic carbon (TOC) and vitrinite reflectance ( R o ). The above results were integrated with microthermometry of fluid inclusions by inference the timing of hydrocarbon migration into the carbonate reservoirs. The horizon-flattening technique was used to process the measured seismic profile and restore the structural evolution profile. Four diagenetic periods and three hydrocarbon accumulation periods were identified. (i) For Syntaxial stage, the fluid captured by the overgrowing cement around particles is mainly seawater; (ii) for (Early) Mesogenetic burial stage, the calcite cements began to capture hydrocarbon fluids and show yellow fluorescence under UV illumination; (iii) for (Late) Mesogenetic burial stage, two sets of cleavage fissures developed in massive calcite cements, and oil inclusions with green fluorescence were entrapped in the crystal; (iv) for Telogenetic burial stage, blue fluorescent inclusions along with hydrocarbon gas inclusions developed in dully luminescent calcite veins. Based on the accurate division of hydrocarbon migration and charging stages, combined with the structural evolution history of the traps, the hydrocarbon accumulation model was established. Because two of the three sets of source rocks are of marine origin, resulting in the lack of vitrinite in the kerogen of those source rocks, there may be some deviation between the measured value of R o and the real value. Some systematic errors may occur in the thermal history and hydrocarbon generation (expulsion) history of the two sets of source rocks. Due to the limitations of seismic horizon-flattening technique—such as the inability to accurately recover the inclined strata thickness and horizontal expansion of strata—the final shape of the evolution process of structural profile may also deviate from the real state in geological history. The accumulation model established in this study was based upon the fluid inclusion experiments, which can effectively characterize the forming process of large condensate gas reservoirs in the Amu Darya Right Bank Block and quantify the timing of hydrocarbon charging. However, the hydrocarbon migration and accumulation model does not take the oil-source correlation into account, but only the relationship between the mature state of source rocks and the timing of hydrocarbon charging into the reservoirs. Subsequent research needs to conduct refined oil-source correlation to reveal the relationship between gas, condensate, source rocks, and recently discovered crude oil and more strictly constrain and modify the accumulation model, so as to finally disclose the origin of the crude oil and oil reservoir forming process in the Amu Darya Right Bank Block, evaluate the future exploration potential, and point out the direction of various hydrocarbon resources (condensate gas and crude oil).


Author(s):  
Andrenilton Silva ◽  
Artur Barros ◽  
Alek Sousa ◽  
Daniel Jarvie ◽  
Sebastian Calderón ◽  
...  

The Barreirinha Formation-Upper Devonian, is the main petroleum source rock of the Amazon Basin, deposited during the great Devonian Transgression, contributing to significant accumulations of organic matter (OM) in anoxic conditions, which allowed its preservation. The present work had the objective of characterizing the molecular composition of biomarkers in outcrops samples of the Barreirinha Formation, aiming to evaluate the paleoenvironment, thermal evolution, and the preservation of OM total organic carbon (TOC) and Rock-Eval pyrolysis indicate considerable amounts of immature OM deposited in a low oxygenation environment. Gas chromatographymass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) data corroborate that the OM was deposited in a suboxic to the oxic environment and low salinity (absence or low relative abundance of β-carotane and gammacerane). 24-N-Propyl-cholestane was detected and identified by synthetic pattern co-injection. High concentrations of tetracyclic polyprenoids (TPPs) in ascending order from base to top, high hopane/sterane ratios, to suggest that the samples had a high molecular weight n-alkanes, C29 steranes, low thermal evolution, and anoxic depositional paleoenvironment.


Author(s):  
N. A. Skibitskaya ◽  
◽  
I. O. Burkhanova ◽  
M. N. Bolshakov ◽  
V. A. Kuzmin ◽  
...  

Evaluation of rock wettability is an important task, since this parameter determines the distribution of water and oil in the reservoirs and their relative and phase permeability. The reliability of evaluation the wettability of rock samples depends on the drilling-in conditions during core sampling and core sample preparation methods. The investigation of the surface properties of the core from the Orenburg oil and gas condensate field showed that using of polymer-colloidal drilling mud leads to hydrophilization of the samples' surface. To obtain information on the actual wettability values of rock samples taken from wells drilled with polymer-colloidal drilling mud a method for estimating the relative (predominant) wettability of rocks based on petrophysical and lithological studies data is proposed. The authors suggest that the extraction of oil and gas source rock samples leads to irreversible changes in surface properties that cannot be restored. Keywords: selective wettability; relative wettability; predominant wettability; polymer-colloidal drilling mud; residual gas saturation; trapped gas saturation; pore space structure; extraction.


Sign in / Sign up

Export Citation Format

Share Document