scholarly journals Conserved T‐cell receptor class II major histocompatibility complex contact detected in a T‐lymphocyte population

Immunology ◽  
1998 ◽  
Vol 95 (2) ◽  
pp. 185-192
Author(s):  
FENG ◽  
CHOU ◽  
LIAW ◽  
LAI
Cell ◽  
1987 ◽  
Vol 49 (2) ◽  
pp. 263-271 ◽  
Author(s):  
John W. Kappler ◽  
Terri Wade ◽  
Janice White ◽  
Ella Kushnir ◽  
Marcia Blackman ◽  
...  

1995 ◽  
Vol 182 (4) ◽  
pp. 993-1004 ◽  
Author(s):  
S Cardell ◽  
S Tangri ◽  
S Chan ◽  
M Kronenberg ◽  
C Benoist ◽  
...  

Rather unexpectedly, major histocompatibility complex class II-deficient mice have a significant population of peripheral CD4+ T lymphocytes. We have investigated these cells at the population and clonal levels. CD4+ T lymphocytes from class II-deficient animals are thymically derived, appear early in ontogeny, exhibit the phenotype of resting memory cells, are potentially functional by several criteria, and have a diverse T cell receptor repertoire. They do not include substantially elevated numbers of NK1.1+ cells. Hybridomas derived after polyclonal stimulation of the CD4+ lymphocytes from class II-deficient animals include a subset with an unusual reactivity pattern, responding to splenocytes from many mouse strains including the strain of origin. Most members of this subset recognize the major histocompatibility complex class Ib molecule CD1; their heterogeneous reactivities and T cell receptor usage further suggest the involvement of peptides and/or highly variable posttranslational modifications.


1994 ◽  
Vol 180 (5) ◽  
pp. 1921-1929 ◽  
Author(s):  
N Labrecque ◽  
J Thibodeau ◽  
W Mourad ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) stimulate a high proportion of T cells expressing specific variable regions of the T cell receptor (TCR) beta chain. Although most alleles and isotypes bind SAGs, polymorphisms of major histocompatibility complex (MHC) class II molecules affect their presentation to T cells. This observation has raised the possibility that a TCR-MHC class II interaction can occur during this recognition process. To address the importance of such interactions during SAG presentation, we have used a panel of murine T cell hybridomas that respond to the bacterial SAG Staphylococcal enterotoxin B (SEB) and to the retroviral SAG Mtv-7 when presented by antigen-presenting cells (APCs) expressing HLA-DR1. Amino acid substitutions of the putative TCR contact residues 59, 64, 66, 77, and 81 on the DR1 beta chain showed that these amino acids are critical for recognition of the SAG SEB by T cells. TCR-MHC class II interactions are thus required for T cell recognition of SAG. Moreover, Mtv-7 SAG recognition by the same T cell hybridomas was not affected by these mutations, suggesting that the topology of the TCR-MHC class II-SAG trimolecular complex could be different from one TCR to another and from one SAG to another.


1993 ◽  
Vol 177 (4) ◽  
pp. 1047-1060 ◽  
Author(s):  
L Racioppi ◽  
F Ronchese ◽  
L A Matis ◽  
R N Germain

Clonal activation of CD4+ and CD8+ T lymphocytes depends on binding of peptide-major histocompatibility complex (MHC) molecule complexes by their alpha/beta receptors, eventually resulting in sufficient aggregation to initiate second messenger generation. The nature of intracellular signals resulting from such T cell receptor (TCR) occupancy is believed to be independent of the specific structure of the ligand being bound, and to vary quantitatively, not qualitatively, with the concentration of ligand offered and the affinity of the receptor for the peptide-MHC molecule complex. In contrast to the expectations of this model, the analysis of the response of a T helper type 1 clone to mutant E alpha E beta k molecules in the absence or presence of a peptide antigen revealed that peptide inhibited the interleukin 2 (IL-2) response to an otherwise allostimulatory mutant form of this MHC class II molecule. The inhibition was not due to competition for formation of alloantigen, it required TCR recognition of peptide-mutant MHC molecule complexes, and it decreased IL-2 production without affecting receptor-dependent IL-3, IL-2 receptor alpha, or size enlargement responses. This preferential reduction in IL-2 secretion could be correlated with the costimulatory signal dependence of this cytokine response, but could not be overcome by crosslinking the CD28 molecule on the T cell. These results define a new class of TCR ligands with mixed agonist/antagonist properties, and point to a ligand-related variation in the quality of clonotypic receptor signaling events or their integration with other signaling processes. It was also found that a single TCR ligand showed greatly different dose thresholds for the elicitation of distinct effector responses from a cloned T cell population. The observations that changes in ligand structure can result in qualitative alterations in the effects of receptor occupancy and that quantitative variations in ligand density can be translated into qualitative differences in T cell responses have important implications for models of intrathymic selection and control of the results of active immunization.


Sign in / Sign up

Export Citation Format

Share Document