INVESTIGATIONS INTO THE ROLE OF CALCIUM IONS IN THE CONTROL OF STEROID PRODUCTION BY ISOLATED ADRENAL ZONA GLOMERULOSA CELLS OF THE RAT

1978 ◽  
Vol 77 (1) ◽  
pp. 119-127 ◽  
Author(s):  
CAROLINE MACKIE ◽  
R. L. WARREN ◽  
E. R. SIMPSON

An increase in the concentration of extracellular potassium from 3·6 to 8·4 mmol/l had only a small delayed effect on the uptake of radioactive calcium by isolated adrenal glomerulosa cells. However, the same stimulus had a rapid and highly significant effect on the efflux of radioactive calcium from glomerulosa cells preloaded with 45Ca2+. Cells incubated in medium containing 8·4 mmol potassium/l had retained approximately 15% more radioactivity than control cells after 2·5 min and this difference was maintained for up to 90 min. There was an increase in the production of steroids by the glomerulosa cells in the presence of 8·4 mm-potassium. No effect on calcium efflux was observed in similar experiments with isolated fasciculata cells; it has been established that this concentration of potassium does not affect steroidogenesis in fasciculata cells, indicating that the effect on glomerulosa cells may be causally linked to steroidogenesis. There was no significant change in the total calcium content of glomerulosa cells in the presence of 8·4 mm-potassium. Exchangeable calcium in these cells was found to be 60% of the total calcium content.

1995 ◽  
Vol 145 (2) ◽  
pp. 283-289 ◽  
Author(s):  
J P Hinson ◽  
L A Cameron ◽  
S Kapas

Abstract Neuropeptide Y (NPY) has been identified in nerves supplying the adrenal cortex of several mammalian species, although its function in this tissue is unknown. The present studies, employing adrenocortical cells prepared by collagenase digestion, have shown that NPY, in the absence of other stimulants, has no effect on steroid secretion by the rat adrenal over a range of peptide concentrations (10−11 to 10 −6 mol/l). However, in the presence of physiological concentrations of ACTH, which are submaximal for the stimulation of aldosterone secretion, NPY (10−6 mol/l) significantly enhanced the secretion rate of aldosterone by rat zona glomerulosa cells in response to ACTH. This effect was specific to the rat zona glomerulosa as NPY had no effect on the response to ACTH in rat zona fasciculata cells. The effect of NPY appears to be biphasic, however, as NPY significantly attenuated the steroidogenic response to supramaximal ACTH concentrations: in rat zona glomerulosa cells the aldosterone response to 10 −8 mol ACTH/l was significantly inhibited by NPY. The effect of NPY on the ACTH response appeared to be mediated by changes in the cAMP response. NPY had no effect on the steroidogenic response to potassium ions (K+), but enhanced the response to angiotensin II. NPY (10 −6 mol/l) significantly stimulated inositol 1,4,5-trisphosphate (InsP3) production although this concentration of peptide had no effect on steroid secretion. The effects of NPY on InsP3 production were additive with those of angiotensin II. These results suggest that the role of NPY in the adrenal cortex may be to regulate the sensitivity of the zona glomerulosa to peptide stimulation. Journal of Endocrinology (1995) 145, 283–289


1993 ◽  
Vol 136 (1) ◽  
pp. 75-83 ◽  
Author(s):  
B. J. Whitehouse ◽  
S. J. Purdy ◽  
D. R. E. Abayasekara

ABSTRACT It is possible that some of the effects of sodium pentobarbitone on the hypothalamo-pituitary-adrenal axis in the intact animal may be attributable to direct actions on the adrenal cortex. The effects of the barbiturate on steroid production by rat adrenal preparations in vitro have therefore been examined. In zona glomerulosa cells, pentobarbitone inhibited basal steroid production in a dose-related fashion. For aldosterone and corticosterone, the doses required for 50% inhibition of production (IC50) were 1·2 mmol pentobarbitone/l and 3·7 mmol/l respectively. Steroidogenesis was inhibited at lower levels of pentobarbitone in the presence of 1 nmol ACTH/l (IC50 = 0·5 mmol pentobarbitone/l for aldosterone and 2·2 mmol/l for corticosterone). In zona fasciculata/reticularis cells, production of corticosterone was similarly reduced with an IC50 of 2·8 mmol pentobarbitone/l for basal production and 1·3 mmol/l for ACTH-stimulated production. The dose-related increases in corticosterone production produced by ACTH (0·1–1000 pmol/l) or dibutyryl cyclic AMP (0·1–1·0 mmol/l) were also eliminated in the presence of 2 mmol pentobarbitone/l. The effects of pentobarbitone (1–4 mmol/l) on the production of pregnenolone and deoxycorticosterone (DOC) were also studied. In zona fasciculata/reticularis cells, the responses of both pregnenolone and DOC were bell-shaped with increases at 1 mmol pentobarbitone/l, which fell back to control levels at 4 mmol pentobarbitone/l. Stimulation of DOC, accompanied by decreases in aldosterone and corticosterone production, was also seen in zona glomerulosa cells at 1 mmol pentobarbitone/l. The effect of 1 mmol pentobarbitone/l on the conversion of 22(R)-hydroxycholesterol (5-cholestene-3β,22(R)-diol), pregnenolone, progesterone and DOC to corticosterone and aldosterone by zona glomerulosa preparations was studied. There was a comparable reduction in the conversion of these precursors (2 μmol/l) to aldosterone with yields decreased to 20–30% of those found in the absence of pentobarbitone. The dose required for 50% reduction of the conversion of progesterone (2 μmol/l) to aldosterone was 0·55 mmol pentobarbitone/l and for corticosterone the dose was 1·75 mmol pentobarbitone/l. The results obtained show that pentobarbitone is an effective inhibitor of corticosteroid biosynthesis in rat adrenal cells, and suggest that its effects are brought about by inhibition of cytochrome P450-mediated hydroxylations. Journal of Endocrinology (1993) 136, 75–83


Author(s):  
Paola Andreis ◽  
G. Albertin ◽  
Maria Conconi ◽  
G. Carraro ◽  
L. Malendowicz ◽  
...  

The effects of various concentrations of extracellular K + (3.6 - 13 mM) on the steroid (corticosterone and aldosterone) and cyclic AMP outputs of capsular cells (95% zona glomerulosa) of the rat adrenal cortex were studied at different concentrations of extracellular Ca 2+ . Small amounts of EGTA (50 μM) were added to reduce the free Ca 2+ concentrations effectively to zero at the lowest possible total Ca 2+ concentration. At a total extracellular concentration of 2.5 mM Ca 2+ , in 27 experiments the mean values of the steroid and cAMP outputs showed a maximum at 8.4 mM K + . The increase in steroid and cAMP outputs at 5.9, 8.4 and 13 mM K + compared with that at 3.6 mM were highly significant ( p < 0.01). The overall correlation of either corticosterone or aldosterone with cAMP outputs was also highly significant and was even better from 3.6 to 8.4 mM K + . Lowering the effective free concentration of Ca 2+ to zero decreased the steroid and cAMP outputs significantly at all K + concentrations, and no output was then significantly higher than at 3.6 mM. With the pooled data on outputs at all total Ca 2+ (2.5, 0.5, 0.25, 0.10, 0.05 and 0.0 mM) and K + (3.6, 5.9, 8.4 and 13 mM) concentrations, the correlation of either steroid with cAMP outputs was highly significant (but again optimally from 3.6 to 8.4 mM K + ). Nifedipine (10 -6 to 10 -4 M) was added to the incubations with the aim of specifically inhibiting Ca 2+ influx at total extracellular Ca 2+ concentra­tions of 2.5, 1.25 and 0.25 mM and with the usual K + concentrations. The cAMP outputs were reduced at all K + concentrations above 3.6 mM K + . The effect was highly significant at 10 -4 M nifedipine and a total Ca 2+ of 1.25 mM, which with the incubation conditions used, corresponds to the free Ca 2+ concentrations in vivo . These results indicate that cAMP plays a significant role in the stimulation of steroid output by K + particularly between 3.6 and 8.4 mM K + . In this range of K + concentrations the stimulation of cAMP seems to be controlled by increases in Ca 2+ influx. The correlation of steroid and cAMP output at the higher K + concentra­tions (between 8.4 and 13 mM K) and at the various total Ca 2+ concentra­tions is less significant. Also, with all concentrations of added nifedipine there is an ‘anomalous’ increase in steroid output at 13 mM K + and at total Ca 2+ concentrations of 2.5 and 1.25 mM. However, at the same K + concentrations and at 0.25 mM Ca 2+ , nifedipine decreases steroid outputs. Our previous data, obtained after addition of maximally effective amounts of cAMP, indicated that there were also non-cAMP mechanisms involved in the stimulation of steroidogenesis by K + in z. g. cells. The present data confirm this conclusion, particularly at K + concentrations above 8.4 mM. They also indicate that at these higher K + concentrations, by non-cAMP mechanisms increasing intracellular Ca 2+ concentrations probably inhibit steroidogenesis. We conclude, however, that in the physiological range of K + concentra­tions, the role of cAMP in zona glomerulosa cells is at least comparable in importance to that of non-cAMP mechanisms.


1982 ◽  
Vol 94 (2) ◽  
pp. 241-252 ◽  
Author(s):  
P Miao ◽  
V H Black

This paper reports a quick, relatively simple and reproducible technique for obtaining populations of zona fasciculata and zona glomerulosa cells up to 80-90% pure, which can be maintained in vitro for study of adrenocortical cell function. Isolated guinea pig adrenocortical cells were separated on a 1-28% bovine serum albumin/Ca++, Mg++-free buffer gradient (wt/vol at 4% increments) using equilibrium density centrifugation (570 g, 30 min). Over 60% of the 8 x 10(5) viable cells/adrenal obtained in the total isolate were recovered after separation. 80% of the zona glomerulosa cells were found in the lower three bands of the gradient. 78% of the zona fasciculata cells were found in the top three bands. Of the cells in the first two bands, 78-91% were zona fasciculata cells, whereas of the cells in the bottom two bands 92-95% were zona glomerulosa cells. The cells retained the morphological characteristics of cells in situ and could be maintained in vitro for periods up to 11 d. They produced a wide variety of steroids, cortisol, corticosterone, aldosterone, 11-beta-hydroxyandrostenedione, deoxycortisol, deoxycorticosterone, cortisone, 18-hydroxycorticosterone, and a product tentatively identified as dehydroepiandrosterone, and they responded to ACTH in a dose-responsive manner with enhanced levels of steroid output. Zona glomerulosa-enriched populations differed from zona fasciculata-enriched populations in their abundant production of aldosterone and in the pattern of steroid production. None of the cultures responded to angiotensin II (100 pg/ml) with increased steroid production.


Sign in / Sign up

Export Citation Format

Share Document