Stress intensity factors for edge‐cracked plates under arbitrary loading

Author(s):  
Fett
1985 ◽  
Vol 21 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Ramesh Chandra ◽  
M.V.V. Murthy ◽  
T.S. Ramamurthy ◽  
A.K. Rao

1982 ◽  
Vol 49 (1) ◽  
pp. 87-96 ◽  
Author(s):  
P. S. Theocaris

The experimental method of caustics was applied to the study of asymmetric bending of isotropic cracked plates and to the determination of the complex stress intensity factors (S.I.F’s) at the crack tips. It was shown that the method of reflected caustics is convenient for detecting and evaluating both KI and KII stress intensity factors. Based on the singular approximation of the elastic solution around the crack tip, the theory of formation of the caustics was developed and related to the evaluation of both components of stress intensity factors. It was also shown that the generalized method of caustics, known as the method of pseudocaustics, is a potential and simple method for determining S.I.F’s in cracked plates submitted to bending. Experimental evidence with specimens made either of optically inert materials, such as plexiglass, or of any opaque material like steel, and elastically loaded, has corroborated the theoretical results.


1999 ◽  
Vol 121 (2) ◽  
pp. 181-187 ◽  
Author(s):  
C.-C. Ma ◽  
I-K. Shen

In this study, mode I stress intensity factors for a three-dimensional finite cracked body with arbitrary shape and subjected to arbitrary loading is presented by using the boundary weight function method. The weight function is a universal function for a given cracked body and can be obtained from any arbitrary loading system. A numerical finite element method for the determination of weight function relevant to cracked bodies with finite dimensions is used. Explicit boundary weight functions are successfully demonstrated by using the least-squares fitting procedure for elliptical quarter-corner crack and embedded elliptical crack in parallelepipedic finite bodies. If the stress distribution of a cut-out parallelepipedic cracked body from any arbitrary shape of cracked body subjected to arbitrary loading is determined, the mode I stress intensity factors for the cracked body can be obtained from the predetermined boundary weight functions by a simple surface integration. Comparison of the calculated results with some available solutions in the published literature confirms the efficiency and accuracy of the proposed boundary weight function method.


Sign in / Sign up

Export Citation Format

Share Document