arbitrary loading
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 7 (26) ◽  
pp. eabf3658
Author(s):  
Colin Bonatti ◽  
Dirk Mohr

Computational models describing the mechanical behavior of materials are indispensable when optimizing the stiffness and strength of structures. The use of state-of-the-art models is often limited in engineering practice due to their mathematical complexity, with each material class requiring its own distinct formulation. Here, we develop a recurrent neural network framework for material modeling by introducing “Minimal State Cells.” The framework is successfully applied to datasets representing four distinct classes of materials. It reproduces the three-dimensional stress-strain responses for arbitrary loading paths accurately and replicates the state space of conventional models. The final result is a universal model that is flexible enough to capture the mechanical behavior of any engineering material while providing an interpretable representation of their state.


2021 ◽  
Vol 316 ◽  
pp. 928-935
Author(s):  
Alexander Shapoval ◽  
Iurii Savchenko ◽  
Oleg Markov

Developed a mathematical model, which makes it possible to optimize, from the point of view of defect formation, the parameters of stress concentration in a deformable elastic body of the materials being processed, destruction is considered as a method for creating defects at a submicroscopic level in various media. Getting expressions of conformal reflection of single circle on an arbitrary area, using a conformal reflection and transformation of Laplace, it is possible to design behavior of a tensely deformed state of solid at the arbitrary loading.


This chapter concerns the study of forced vibration of a single degree of freedom system, treating undamped and damped system under harmonic, periodic, and arbitrary loading with different cases and examples. Passing by all components of the general solution of an undamped forced system, which are a transient solution, depends only on initial conditions, transient solution due to the load at the end the stationary solution. In this chapter, a study of the dynamic influence factor depends on the ration between load frequency and structure one is presented.


2021 ◽  
Vol 8 (1) ◽  
pp. 26-35
Author(s):  
Francesco Marmo

Abstract According to Heyman’s safe theorem of the limit analysis of masonry structures, the safety of masonry arches can be verified by finding at least one line of thrust entirely laying within the masonry and in equilibrium with external loads. If such a solution does exist, two extreme configurations of the thrust line can be determined, respectively referred to as solutions of minimum and maximum thrust. In this paper it is presented a numerical procedure for determining both these solutions with reference to masonry arches of general shape, subjected to both vertical and horizontal loads. The algorithm takes advantage of a simplification of the equations underlying the Thrust Network Analysis. Actually, for the case of planar lines of thrust, the horizontal components of the reference thrusts can be computed in closed form at each iteration and for any arbitrary loading condition. The heights of the points of the thrust line are then computed by solving a constrained linear optimization problem by means of the Dual-Simplex algorithm. The MATLAB implementation of presented algorithm is described in detail and made freely available to interested users (https://bit.ly/3krlVxH). Two numerical examples regarding a pointed and a lowered circular arch are presented in order to show the performance of the method.


2020 ◽  
Vol 213 ◽  
pp. 110459
Author(s):  
Pengjun Luo ◽  
Hayato Asada ◽  
Tsuyoshi Tanaka

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2193 ◽  
Author(s):  
Krzysztof K. Dudek ◽  
Daphne Attard ◽  
Ruben Gatt ◽  
James N. Grima-Cornish ◽  
Joseph N. Grima

In this work, through the use of a theoretical model, we analyse the potential of a specific three-dimensional mechanical metamaterial composed of arrowhead-like structural units to exhibit a negative Poisson’s ratio for an arbitrary loading direction. Said analysis allows us to assess its suitability for use in applications where materials must be able to respond in a desired manner to a stimulus applied in multiple directions. As a result of our studies, we show that the analysed system is capable of exhibiting auxetic behaviour for a broad range of loading directions, with isotropic behaviour being shown in some planes. In addition to that, we show that there are also certain loading directions in which the system manifests negative linear compressibility. This enhances its versatility and suitability for a number of applications where materials exhibiting auxetic behaviour or negative linear compressibility are normally implemented.


Sign in / Sign up

Export Citation Format

Share Document