a cell
Recently Published Documents


TOTAL DOCUMENTS

20253
(FIVE YEARS 4291)

H-INDEX

223
(FIVE YEARS 27)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122986
Author(s):  
Archontoula Kalogeropoulou ◽  
Iris Plioni ◽  
Dimitra Dimitrellou ◽  
Magdalini Soupioni ◽  
Poonam Singh Nigam ◽  
...  

2022 ◽  
pp. 153537022110669
Author(s):  
Madhu V Singh ◽  
Karthik Dhanabalan ◽  
Joseph Verry ◽  
Ayotunde O Dokun

B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) protein is a member of BAG family of co-chaperones that modulates major biological processes, including apoptosis, autophagy, and development to promote cellular adaptive responses to stress stimuli. Although BAG3 is constitutively expressed in several cell types, its expression is also inducible and is regulated by microRNAs (miRNAs). miRNAs are small non-coding RNAs that mostly bind to the 3′-UTR (untranslated region) of mRNAs to inhibit their translation or to promote their degradation. miRNAs can potentially regulate over 50% of the protein-coding genes in a cell and therefore are involved in the regulation of all major functions, including cell differentiation, growth, proliferation, apoptosis, and autophagy. Dysregulation of miRNA expression is associated with pathogenesis of numerous diseases, including peripheral artery disease (PAD). BAG3 plays a critical role in regulating the response of skeletal muscle cells to ischemia by its ability to regulate autophagy. However, the biological role of miRNAs in the regulation of BAG3 in biological processes has only been elucidated recently. In this review, we discuss how miRNA may play a key role in regulating BAG3 expression under normal and pathological conditions.


2022 ◽  
Author(s):  
Prasanna Katti ◽  
Alexander S Hall ◽  
Peter T Ajayi ◽  
Yuho Kim ◽  
T Bradley Willingham ◽  
...  

Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to the sarcoplasmic reticulum. Finally, we demonstrate myosin filament lattice spacing is smaller at filament ends than filament centers in a cell type-dependent manner. These data suggest that both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within a muscle cell.


2022 ◽  
Vol 10 (1) ◽  
pp. 183
Author(s):  
Tourya Sagouti ◽  
Zineb Belabess ◽  
Naima Rhallabi ◽  
Essaid Ait Barka ◽  
Abdessalem Tahiri ◽  
...  

Citrus stubborn was initially observed in California in 1915 and was later proven as a graft-transmissible disease in 1942. In the field, diseased citrus trees have compressed and stunted appearances, and yield poor-quality fruits with little market value. The disease is caused by Spiroplasma citri, a phloem-restricted pathogenic mollicute, which belongs to the Spiroplasmataceae family (Mollicutes). S. citri has the largest genome of any Mollicutes investigated, with a genome size of roughly 1780 Kbp. It is a helical, motile mollicute that lacks a cell wall and peptidoglycan. Several quick and sensitive molecular-based and immuno-enzymatic pathogen detection technologies are available. Infected weeds are the primary source of transmission to citrus, with only a minor percentage of transmission from infected citrus to citrus. Several phloem-feeding leafhopper species (Cicadellidae, Hemiptera) support the natural spread of S. citri in a persistent, propagative manner. S. citri-free buds are used in new orchard plantings and bud certification, and indexing initiatives have been launched. Further, a quarantine system for newly introduced types has been implemented to limit citrus stubborn disease (CSD). The present state of knowledge about CSD around the world is summarized in this overview, where recent advances in S. citri detection, characterization, control and eradication were highlighted to prevent or limit disease spread through the adoption of best practices.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009702
Author(s):  
Ulrike Münzner ◽  
Tomoya Mori ◽  
Marcus Krantz ◽  
Edda Klipp ◽  
Tatsuya Akutsu

Boolean networks (BNs) have been developed to describe various biological processes, which requires analysis of attractors, the long-term stable states. While many methods have been proposed to detection and enumeration of attractors, there are no methods which have been demonstrated to be theoretically better than the naive method and be practically used for large biological BNs. Here, we present a novel method to calculate attractors based on a priori information, which works much and verifiably faster than the naive method. We apply the method to two BNs which differ in size, modeling formalism, and biological scope. Despite these differences, the method presented here provides a powerful tool for the analysis of both networks. First, our analysis of a BN studying the effect of the microenvironment during angiogenesis shows that the previously defined microenvironments inducing the specialized phalanx behavior in endothelial cells (ECs) additionally induce stalk behavior. We obtain this result from an extended network version which was previously not analyzed. Second, we were able to heuristically detect attractors in a cell cycle control network formalized as a bipartite Boolean model (bBM) with 3158 nodes. These attractors are directly interpretable in terms of genotype-to-phenotype relationships, allowing network validation equivalent to an in silico mutagenesis screen. Our approach contributes to the development of scalable analysis methods required for whole-cell modeling efforts.


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 143-144
Author(s):  
Jan van der Valk

Ethical and possible reproducibility issues arise when using fetal bovine serum in cell culture media


2022 ◽  
Author(s):  
Tom Johnson ◽  
Defne Saatci ◽  
Lahiru Handunnetthi

Susceptibility to schizophrenia is mediated by genetic and environmental risk factors. Infection driven maternal immune activation (MIA) during pregnancy is a key environmental risk factor. However, little is known about how MIA during pregnancy could contribute to adult-onset schizophrenia. In this study, we investigated if maternal immune activation induces changes in methylation of genes linked to schizophrenia. We found that differentially expressed genes in schizophrenia brain were significantly enriched among MIA induced differentially methylated genes in the foetal brain in a cell-type-specific manner. Upregulated genes in layer V pyramidal neurons were enriched among hypomethylated genes at gestational day 9 (fold change = 1.57 , FDR = 0.049) and gestational day 17 (fold change = 1.97 , FDR = 0.0006). We also found that downregulated genes in GABAergic Rosehip interneurons were enriched among hypermethylated genes at gestational day 17 (fold change = 1.62, FDR= 0.03). Collectively, our results highlight a connection between MIA driven methylation changes during gestation and schizophrenia gene expression signatures in the adult brain. These findings carry important implications for early preventative strategies in schizophrenia.


Author(s):  
Julia Vaz Ernesto ◽  
Daiane Silva Machado ◽  
Camilo Lellis-Santos

Using real-world situations to engage students in learning specific content is preconized by educational research as an effective strategy. However, motivating students to establish personal and emotional connections with the curricular content is challenging. We presented a didactic strategy named The presidential election of the human body, created to use the presidential election context to engage students in studying cell function and structure using role-playing and appropriation of scientific concepts. Four groups of students (N=124) of the science and mathematics teacher training program chose a cell of the human body to impersonate, they studied the biology of their cell, and they ran in a presidential election campaign. They created slogans, videos, and materials for their campaign, and on the day of the election, the group of the students voted for the best slogan. The didactic strategy was capable of stimulating the appropriation of the characteristics of the cells they represented. The majority (75%) of the elected candidates represented cells that are linked to the nervous system. Musicality and humor were the most frequent styles that appeared in the slogans. Students strongly agreed that they enjoyed the activity and considered it valuable for contextualizing the learning of anatomy and physiology. Thus, the activity is a didactic resource to stimulate the students to embrace the content they are learning in a contextualized momentum of a presidential election.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Marco Saponaro

Transcription and replication are the two most essential processes that a cell does with its DNA: they allow cells to express the genomic content that is required for their functions and to create a perfect copy of this genomic information to pass on to the daughter cells. Nevertheless, these two processes are in a constant ambivalent relationship. When transcription and replication occupy the same regions, there is the possibility of conflicts between transcription and replication as transcription can impair DNA replication progression leading to increased DNA damage. Nevertheless, DNA replication origins are preferentially located in open chromatin next to actively transcribed regions, meaning that the possibility of conflicts is potentially an accepted incident for cells. Data in the literature point both towards the existence or not of coordination between these two processes to avoid the danger of collisions. Several reviews have been published on transcription–replication conflicts, but we focus here on the most recent findings that relate to how these two processes are coordinated in eukaryotes, considering advantages and disadvantages from coordination, how likely conflicts are at any given time, and which are their potential hotspots in the genome.


F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 38
Author(s):  
Mikhail Raevskiy ◽  
Anna Kondrashina ◽  
Yulia Medvedeva

Identification of transcription factors (TFs) that could induce and direct cell conversion remains a challenge. Though several hundreds of TFs are usually transcribed in each cell type, the identity of a cell is controlled and can be achieved through the ectopic overexpression of only a small subset of so-called core TFs. Currently, the experimental identification of the core TFs for a broad spectrum of cell types remains challenging. Computational solutions to this problem would provide a better understanding of the mechanisms controlling cell identity during natural embryonic or malignant development, as well as give a foundation for cell-based therapy. Herein, we propose a computational approach based on over-enrichment of transcription factors binding sites (TFBS) in differentially accessible chromatin regions that could identify the potential core TFs for a variety of primary human cells involved in hematopoiesis. Our approach enables the integration of both transcriptomic (single-cell RNA sequencing, scRNA-seq) and epigenenomic (single-cell assay for transposable-accessible chromatin, scATAC-seq) data at the single-cell resolution to search for core TFs, and can be scalable to predict subsets of core TFs and their role in a given conversion between cells.


Sign in / Sign up

Export Citation Format

Share Document