Sparse S-transform for location of faults on transmission lines operating with unified power flow controller

2015 ◽  
Vol 9 (15) ◽  
pp. 2108-2116 ◽  
Author(s):  
Loknath Tripathy ◽  
Subhransu Ranjan Samantaray ◽  
Pradipta Kishore Dash
Author(s):  
Subramani C ◽  
S. S. Dash ◽  
Vimala C ◽  
Uma Mageshwari

<p>In this paper we presents a new component within the flexible ac-transmission system (FACTS) family, called Distributed Power-Flow Controller (DPFC). The DPFC is derived from the unified power-flow controller (UPFC). The DPFC can be considered as a UPFC with an eliminated common dc link. The active power exchange between the shunt and series converters, which is through the common dc link in the UPFC, is now through the transmission lines at the third-harmonic frequency. The DPFC employs the distributed FACTS (DFACTS) concept, which is to use multiple small-size single-phase converters instead of the one large-size three-phase series converter in the UPFC. The large number of series converters provides redundancy, thereby increasing the system reliability. As the D-FACTS converters are single-phase and floating with respect to the ground, there is no high-voltage isolation required between the phases. Accordingly, the cost of the DPFC system is lower than the UPFC. The DPFC has the same control capability as the UPFC, which comprises the adjustment of the line impedance, the transmission angle, and the bus voltage. The controller is designed to achieve the most appropriate operating point based on the real power priority.</p>


2019 ◽  
Vol 8 (3) ◽  
pp. 2039-2043

Many of the Power Flow Controlling Devices are mostly used in the Transmission Lines in order to monitor the real as well as reactive power-flow variations. In this work provide an innovative power flow controlling device such as Distributed Power Flow Controller, this device also belongs to the FACTS family. This device is emerged from the Unified Power Flow Controller, there is a small differentiation between both these devices that is the common dc-link. In case of DPFC there is no existence of the dc link which connects both the converters. By design a DPFC device in MATLAB/Simulink to analyze the transmission line parameters


2020 ◽  
Vol 26 (2) ◽  
pp. 176-192
Author(s):  
Sana K. Abd al hassan ◽  
Firas Mohammed Tuaimah

Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with the most robust type of FACTS devices; it’s a Unified Power Flow Controller (UPFC). Many cases have been taken to study how the system behaves in the presence and absence of the UPFC under normal and contingency conditions. The UPFC is a device that can be used to improve the bus voltage, increasing the loadability of the line and reduce the active and reactive power losses in the transmission lines, through controlling the flow of real and reactive power. Both the magnitude and the phase angle of the voltage can be varied independently. The steady state model of UPFC has been adopted on IEEE-30 bus test system and simulated using MATLAB programming language. Newton Raphson (NR) numerical analysis method has been used for solving the load flow of the system. The practical part has been solved through Power System Simulation for Engineers (PSS\E) software Version 32.0. The Comparative results between the experimental and practical parts obtained from adopting the UPFC where too close and almost the same under different loading conditions, which are (5%, 10%, 15% and 20%) of the total load.


Sign in / Sign up

Export Citation Format

Share Document