matlab programming
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 176)

H-INDEX

8
(FIVE YEARS 3)

Computers ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
David Gilberto Gracia-Velásquez ◽  
Andrés Steven Morales-Rodríguez ◽  
Oscar Danilo Montoya

The problem of the electrical characterization of single-phase transformers is addressed in this research through the application of the crow search algorithm (CSA). A nonlinear programming model to determine the series and parallel impedances of the transformer is formulated using the mean square error (MSE) between the voltages and currents measured and calculated as the objective function. The CSA is selected as a solution technique since it is efficient in dealing with complex nonlinear programming models using penalty factors to explore and exploit the solution space with minimum computational effort. Numerical results in three single-phase transformers with nominal sizes of 20 kVA, 45 kVA, 112.5 kVA, and 167 kVA demonstrate the efficiency of the proposed approach to define the transformer parameters when compared with the large-scale nonlinear solver fmincon in the MATLAB programming environment. Regarding the final objective function value, the CSA reaches objective functions lower than 2.75×10−11 for all the simulation cases, which confirms their effectiveness in minimizing the MSE between real (measured) and expected (calculated) voltage and current variables in the transformer.


2021 ◽  
Vol 12 (2) ◽  
pp. 57-67
Author(s):  
Nelson Luis Manuel ◽  
Nihat İnanç ◽  
Mustafa Yasin Erten

Formations or groups of robots become essential in cases where a single robot is insufficient to satisfy a given task. With an increasingly automated world, studies on various topics related to robotics have been carried out in both the industrial and academic arenas. In this paper, the control of the formation of differential mobile robots based on the leader-follower approach is presented. The leader's movement is based on the least cost path obtained by the A-star algorithm, thus ensuring a safe and shortest possible route for the leader. Follower robots track the leader's position in real time. Based on this information and the desired distance and angle values, the leader robot is followed. To ensure that the followers do not collide with each other and with the obstacles in the environment, a controller based on Artificial Potential Fields is designed. Stability analysis using Lyapunov theory is performed on the linearized model of the system. To verify the implemented technique, a simulator was designed using the MATLAB programming language. Seven experiments are conducted under different conditions to show the performance of the approach. The distance and orientation errors are less than 0.1 meters and 0.1 radians, respectively. Overall, mobile robots are able to reach the goal position, maintaining the desired formation, in finite time.


2021 ◽  
Vol 24 (2) ◽  
pp. 144-148
Author(s):  
Alaa Nabeel Haj Najeb ◽  
Nasser Nasser

Facial expressions are a form of non-verbal communication, they appear as changes on the surface of the facial skin according to one's inner emotional states, aims, or social communications. Classification of these expressions is a normal process for humans, but it is a challenging task for machines.Lately, interest in facial expression recognition has grown, and many systems have been developed to classify expressions from facial images. Any expression recognition system is comprised of three steps. The first one is face acquisition, then feature extraction, and finally classification. The classification accuracy depends primarily on the feature extraction step.  Therefore, in this research we study many texture feature extraction descriptors and compare their results under the same preprocessing circumstances; moreover, we propose two improvements for one of these descriptors, which give better results than the original one. We validate the results on two commonly used databases for expression recognition using Matlab programming language, wishing all of that to be an interesting point for researchers in this field.


2021 ◽  
pp. 5024-5034
Author(s):  
Zahra Ezz El Din

Georeferencing process is one of the most important prerequisites for various geomatics applications; for example, photogrammetry, laser scan analysis, remotely sensing, spatial and descriptive data collection, and others. Georeferencing mostly involves the transformation of coordinates obtained from images that are inhomogeneous due to accuracy differences. The georeferencing depends on image resolution and accuracy level of measurements of reference points ground coordinates.  Accordingly, this study discusses the subject of coordinate’s transformation from the image to the global coordinates system (WGS84) to find a suitable method that provides more accurate results. In this study, the Artificial Neural Network (ANN) method was applied, in addition to several numerical methods, namely the Affine divided difference, Newton’s divided difference, and polynomial transformation. The four methods were modelled and coded using Matlab programming language based on an image captured from Google Earth. The image was used to determine reference points within the study area (University of Baghdad campus).  The findings of this study showed that the ANN enhanced the results by about 50% in terms of accuracy and 90% in terms of homogeneity, compared with the other methods.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 225
Author(s):  
Xiaohong Gui ◽  
Haiteng Xue ◽  
Ripeng Gao ◽  
Xingrui Zhan ◽  
Fupeng Zhao

Considering the characteristics of narrow underground space and energy distribution, based on blade element momentum theory, Wilson optimization model and MATLAB programming calculation results, the torsion angle and chord length of wind turbine blade under the optimized conditions were obtained. Through coordinate transformation, the data were transformed into three-dimensional form. The three-dimensional model of the blade was constructed, and the horizontal axis wind turbine blade under the underground low wind speed environment was designed. The static structural analysis and modal analysis were carried out. Structural design, optimization calculation and aerodynamic analysis were carried out for three kinds of air ducts: external convex, internal concave and linear. The results show that the velocity distribution in the throat of linear air duct is relatively uniform and the growth rate is large, so it should be preferred. When the tunnel wind speed is 4.3 m/s and the rated speed is 224 rad/s, the maximum displacement of the blade is in the blade tip area and the maximum stress is at the blade root, which is not easy to resonate. The change rate of displacement, stress and strain of blade is positively correlated with speed. The energy of blade vibration is mainly concentrated in the swing vibration of the first and second modes. With the increase in vibration mode order, the amplitude and shape of the blade gradually transition to the coupling vibration of swing, swing and torsion. The stress and strain of the blade are lower than the allowable stress and strain of glass fiber reinforced plastics (FRP), and resonance is not easy to occur in the first two steps. The blade is generally safe and meets the design requirements.


Author(s):  
Xunpeng Zhao ◽  
Shuangshuang Sun ◽  
Yang Wang ◽  
Xiugang Wang

Abstract The material properties of composite materials are affected by changes in temperature and moisture. This study used the glass/carbon fiber reinforced plastic hybrid composite (G/CFRPHC) laminate as the research object. The stiffness and strength of the composite lamina were expressed as a function of hydrothermal parameters. Based on classical lamination theory(CLT) and macro-mechanical analysis, using MATLAB programming, the tensile strength of G/CFRPHC laminates under a hydrothermal environment was studied. In addition, the influence of temperature, ply thickness, ply stacking sequence, and ply angle on the tensile strength of G/CFRPHC laminates under a hydrothermal environment was discussed. The results show that the tensile strength of G/CFRPHC laminates decreases with the increase of temperature and laying angle in the temperature range of 20℃~110℃ in the hydrothermal environment (moisture absorption rate C1=0.5%). Furthermore, for the G/CFRPHC laminates with laying modes of (02G/90mC)S, (04G/90mC)S, (06G/90mC)S, as m increases, their tensile strength gradually decreases. The tensile strength of G/CFRPHC laminates with the same ply angle but different ply stacking sequence is also not the same.


2021 ◽  
Vol 13 (24) ◽  
pp. 13633
Author(s):  
Oscar Danilo Montoya ◽  
Luis Fernando Grisales-Noreña ◽  
Alberto-Jesus Perea-Moreno

The problem of the optimal siting and sizing of photovoltaic (PV) sources in grid connected distribution networks is addressed in this study with a master–slave optimization approach. In the master optimization stage, a discrete–continuous version of the Chu and Beasley genetic algorithm (DCCBGA) is employed, which defines the optimal locations and sizes for the PV sources. In the slave stage, the successive approximation method is used to evaluate the fitness function value for each individual provided by the master stage. The objective function simultaneously minimizes the energy purchasing costs in the substation bus, and the investment and operating costs for PV sources for a planning period of 20 years. The numerical results of the IEEE 33-bus and 69-bus systems demonstrate that with the proposed optimization methodology, it is possible to eliminate about 27% of the annual operation costs in both systems with optimal locations for the three PV sources. After 100 consecutive evaluations of the DCCBGA, it was observed that 44% of the solutions found by the IEEE 33-bus system were better than those found by the BONMIN solver in the General Algebraic Modeling System (GAMS optimization package). In the case of the IEEE 69-bus system, the DCCBGA ensured, with 55% probability, that solutions with better objective function values than the mean solution value of the GAMS were found. Power generation curves for the slack source confirmed that the optimal siting and sizing of PV sources create the duck curve for the power required to the main grid; in addition, the voltage profile curves for both systems show that voltage regulation was always maintained between ±10% in all the time periods under analysis. All the numerical validations were carried out in the MATLAB programming environment with the GAMS optimization package.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yunhong Xu ◽  
Huadong Wang ◽  
Nga Lay Hui

In this paper, a new forecasting method of agricultural water demand, fractional-order cumulative discrete grey model, is proposed. Firstly, the best fitting of historical data is used to construct the optimization model. MATLAB programming is applied to solve the optimization model and obtain the optimal order. Secondly, the fractional-order cumulative discrete grey model in this paper is compared with GM (1, 1) model to verify the performance of the model. Finally, Handan region of Hebei Province and Jingzhou region of Hubei Province were selected as the study areas to predict their agricultural water consumptions. The results show that the fractional-order cumulative discrete grey model has better prediction performance than the GM (1, 1) model. It can be used as an effective method for forecasting agricultural water consumption.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3007
Author(s):  
Muhammad Irfan ◽  
Seung-Ryle Oh ◽  
Sang-Bong Rhee

The relay optimization expresses quite a challenge for smooth and optimal operation of power system networks. The relay optimization is formulated as a mixed integer non-linear problem and is highly constrained. Furthermore, a reliable relaying system must be able to detect and isolate the faulted portion in a timely manner. Therefore, it is necessary to find optimal parameters for relay settings to be able to respond in a timely way to the encountered fault and at the same time keep in consideration the operational and coordination constraints. This paper proposes modified Harris hawk optimization (MHHO), which is based on the intelligent preying tactics of Harris hawks and the improvement of intended modifications, crowding distance and roulette wheel selection. The proposed algorithm has been tested on IEEE 8 and 15-bus systems, using MATLAB programming. The test systems are the distribution networks covering the medium level voltage for consideration. The simulation results verified the success of MHHO to find optimal settings for the relays. For IEEE 8-bus system, MHHO was able to give 35.45% improvement in the results in comparison to other algorithms. Furthermore, for the IEEE 15-bus system, MHHO showed 24.09% improvement on average. The comparison of the results obtained by MHHO with the other state-of-the-art algorithms proved that it is the strong candidate for optimization of the relay coordination problem.


Author(s):  
Muhira Dzar Faraby ◽  
Ontoseno Penangsang ◽  
Rony Seto Wibowo ◽  
Andi Fitriati

<span lang="EN-US">Power quality has an important role in the distribution of electrical energy. The use of non-linear load can generate harmonic spread which can reduce the power quality in the radial distribution system. This research is in form of coordinated planning by combining distributed generation placement, capacitor placement and network reconfiguration to simultaneously minimize active power losses, total harmonic distortion (THD), and voltage deviation as an objective function using the particle swarm optimization method. This optimization technique will be tested on two types of networks in the form 33-bus and 69-bus IEEE Standard Test System to show effectiveness of the proposed method. The use of MATLAB programming shows the result of simulation of increasing power quality achieved for all scenario of proposed method.</span>


Sign in / Sign up

Export Citation Format

Share Document