Integrated pricing framework for optimal power and semi-dynamic traffic flow problem

Author(s):  
Zhe Zhou ◽  
Xuan Zhang ◽  
Qinglai Guo ◽  
Hongbin Sun
2020 ◽  
Vol 11 (3) ◽  
pp. 1854-1865 ◽  
Author(s):  
Si Lv ◽  
Zhinong Wei ◽  
Guoqiang Sun ◽  
Sheng Chen ◽  
Haixiang Zang

2021 ◽  
Vol 13 (16) ◽  
pp. 8703
Author(s):  
Andrés Alfonso Rosales-Muñoz ◽  
Luis Fernando Grisales-Noreña ◽  
Jhon Montano ◽  
Oscar Danilo Montoya ◽  
Alberto-Jesus Perea-Moreno

This paper addresses the optimal power flow problem in direct current (DC) networks employing a master–slave solution methodology that combines an optimization algorithm based on the multiverse theory (master stage) and the numerical method of successive approximation (slave stage). The master stage proposes power levels to be injected by each distributed generator in the DC network, and the slave stage evaluates the impact of each power configuration (proposed by the master stage) on the objective function and the set of constraints that compose the problem. In this study, the objective function is the reduction of electrical power losses associated with energy transmission. In addition, the constraints are the global power balance, nodal voltage limits, current limits, and a maximum level of penetration of distributed generators. In order to validate the robustness and repeatability of the solution, this study used four other optimization methods that have been reported in the specialized literature to solve the problem addressed here: ant lion optimization, particle swarm optimization, continuous genetic algorithm, and black hole optimization algorithm. All of them employed the method based on successive approximation to solve the load flow problem (slave stage). The 21- and 69-node test systems were used for this purpose, enabling the distributed generators to inject 20%, 40%, and 60% of the power provided by the slack node in a scenario without distributed generation. The results revealed that the multiverse optimizer offers the best solution quality and repeatability in networks of different sizes with several penetration levels of distributed power generation.


2021 ◽  
pp. 1-11
Author(s):  
Xun Ji ◽  
Chunfu Shao

Frequent occurrence of urban rainy weather, especially rainstorm weather, affects transportation operation and safety, so it is essential that effective intervention measures to recover disordered traffic be adopted and then analyzed for their influence on the dynamic network. Therefore, models and algorithm to show dynamic traffic flow of traffic network in rainy weather are a fundamental need and have drawn great interest from governments and scholars. In this paper, innovative content contains a travel cost function considering rainfall intensity; considering the travel cost function, a dynamic traffic assignment model based on dynamic rainfall intensity is built. Then a corresponding algorithm is designed. Moreover, this study designs three scenarios under rainfall and analyzes the influence of the rainfall on an example network. The results show that rainfall has a significant effect on traffic flow. The finding proved the proposed models and algorithm can express the development trend of path flow rate on a dynamic network under rainfall.


2020 ◽  
Vol 287 (2) ◽  
pp. 391-409 ◽  
Author(s):  
Fariba Zohrizadeh ◽  
Cedric Josz ◽  
Ming Jin ◽  
Ramtin Madani ◽  
Javad Lavaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document