scholarly journals Normal forms for the endpoint map near nice singular curves for rank-two distributions

Author(s):  
Francesco Boarotto ◽  
Andrei Agrachev

Given a rank-two sub-Riemannian structure $(M,\Delta)$ and a point $x_0\in M$, a singular curve is a critical point of the endpoint map $F:\gamma\mapsto\gamma(1)$ defined on the space of horizontal curves starting at $x_0$. The typical least degenerate singular curves of these structures are called \emph{regular singular curves}; they are \emph{nice} if their endpoint is not conjugate along $\gamma$. The main goal of this paper is to show that locally around a nice singular curve $\gamma$, once we choose a suitable topology on the control space we can find a normal form for the endpoint map, in which $F$ writes essentially as a sum of a linear map and a quadratic form. This is a preparation for a forthcoming generalization of the Morse theory to rank-two sub-Riemannian structures.

2021 ◽  
pp. 1-20
Author(s):  
Alexander Dmitrievich Bruno ◽  
Alexander Borisovich Batkhin

We consider a real polynomial of two variables. Its expansion in the vicinity of the zero singular point begins with the third degree form. We find its simplest forms to which this polynomial is reduced by reversible real local analytic coordinate substitutions. First, the normal forms for the cubic form are obtained using linear coordinate substitutions. There are three of them. Then three non-linear normal forms were obtained for the full polynomial. A simplification of the computation of the normal form is proposed. A meaningful example is considered.


Author(s):  
N.I. Gdansky ◽  
◽  
A.A. Denisov ◽  

The article explores the satisfiability of conjunctive normal forms used in modeling systems.The problems of CNF preprocessing are considered.The analysis of particular methods for reducing this formulas, which have polynomial input complexity is given.


Author(s):  
Krzysztof Tchoń ◽  
Katarzyna Zadarnowska

AbstractWe examine applicability of normal forms of non-holonomic robotic systems to the problem of motion planning. A case study is analyzed of a planar, free-floating space robot consisting of a mobile base equipped with an on-board manipulator. It is assumed that during the robot’s motion its conserved angular momentum is zero. The motion planning problem is first solved at velocity level, and then torques at the joints are found as a solution of an inverse dynamics problem. A novelty of this paper lies in using the chained normal form of the robot’s dynamics and corresponding feedback transformations for motion planning at the velocity level. Two basic cases are studied, depending on the position of mounting point of the on-board manipulator. Comprehensive computational results are presented, and compared with the results provided by the Endogenous Configuration Space Approach. Advantages and limitations of applying normal forms for robot motion planning are discussed.


Author(s):  
VLADIK KREINOVICH ◽  
HUNG T. NGUYEN ◽  
DAVID A. SPRECHER

This paper addresses mathematical aspects of fuzzy logic. The main results obtained in this paper are: 1. the introduction of a concept of normal form in fuzzy logic using hedges; 2. using Kolmogorov’s theorem, we prove that all logical operations in fuzzy logic have normal forms; 3. for min-max operators, we obtain an approximation result similar to the universal approximation property of neural networks.


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Sophia Th. Kyritsi ◽  
Donal O’ Regan ◽  
Nikolaos S. Papageorgiou

AbstractWe consider nonlinear periodic problems driven by the scalar p-Laplacian with a Carathéodory reaction term. Under conditions which permit resonance at infinity with respect to any eigenvalue, we show that the problem has a nontrivial smooth solution. Our approach combines variational techniques based on critical point theory with Morse theory.


2018 ◽  
Vol 10 (1) ◽  
pp. 179-184
Author(s):  
A.M. Romaniv

For non-singular matrices with some restrictions, we establish the relationships between Smith normal forms and transforming matrices (a invertible matrices that transform the matrix to its Smith normal form) of two matrices with corresponding matrices of their least common right multiple over a commutative principal ideal domains. Thus, for such a class of matrices, given answer to the well-known task of M. Newman. Moreover, for such matrices, received a new method for finding their least common right multiple which is based on the search for its Smith normal form and transforming matrices.


2011 ◽  
Vol 76 (3) ◽  
pp. 807-826 ◽  
Author(s):  
Barry Jay ◽  
Thomas Given-Wilson

AbstractTraditional combinatory logic uses combinators S and K to represent all Turing-computable functions on natural numbers, but there are Turing-computable functions on the combinators themselves that cannot be so represented, because they access internal structure in ways that S and K cannot. Much of this expressive power is captured by adding a factorisation combinator F. The resulting SF-calculus is structure complete, in that it supports all pattern-matching functions whose patterns are in normal form, including a function that decides structural equality of arbitrary normal forms. A general characterisation of the structure complete, confluent combinatory calculi is given along with some examples. These are able to represent all their Turing-computable functions whose domain is limited to normal forms. The combinator F can be typed using an existential type to represent internal type information.


2004 ◽  
Vol 14 (09) ◽  
pp. 3337-3345 ◽  
Author(s):  
JIANPING PENG ◽  
DUO WANG

A sufficient condition for the uniqueness of the Nth order normal form is provided. A new grading function is proposed and used to prove the uniqueness of the first-order normal forms of generalized Hopf singularities. Recursive formulas for computation of coefficients of unique normal forms of generalized Hopf singularities are also presented.


Author(s):  
Michael J. O’Donnell

Sections 2.3.4 and 2.3.5 of the chapter ‘Introduction: Logic and Logic Programming Languages’ are crucial prerequisites to this chapter. I summarize their relevance below, but do not repeat their content. Logic programming languages in general are those that compute by deriving semantic consequences of given formulae in order to answer questions. In equational logic programming languages, the formulae are all equations expressing postulated properties of certain functions, and the questions ask for equivalent normal forms for given terms. Section 2.3.4 of the ‘Introduction . . .’ chapter gives definitions of the models of equational logic, the semantic consequence relation . . . T |=≐(t1 ≐ t2) . . . (t1 ≐ t2 is a semantic consequence of the set T of equations, see Definition 2.3.14), and the question answering relation . . . (norm t1,…,ti : t) ?- ≐ (t ≐ s) . . . (t ≐ s asserts the equality of t to the normal form s, which contains no instances of t1, . . . , ti, see Definition 2.3.16).


2014 ◽  
Vol 24 (07) ◽  
pp. 1450090 ◽  
Author(s):  
Tiago de Carvalho ◽  
Durval José Tonon

In this paper, we are dealing with piecewise smooth vector fields in a 2D-manifold. In such a scenario, the main goal of this paper is to exhibit the homeomorphism that gives the topological equivalence between a codimension one piecewise smooth vector field and the respective C0-normal form.


Sign in / Sign up

Export Citation Format

Share Document