scholarly journals An Airborne Multi-Sensor Task Allocation Method Based on Improved Particle Swarm Optimization Algorithm

Author(s):  
Guoqing Shi ◽  
Fan Wu ◽  
Lin Zhang ◽  
Shuyang Zhang ◽  
Cao Guo

The characteristics of airborne multi-sensor task allocation problem are analyzed, and an airborne multi-sensor task allocation model is established. In order to solve the problems of local convergence and slow convergence of the traditional Particle Swarm Optimization (PSO) algorithm, the structure and parameters of the existing Particle Swarm Optimization algorithm are adjusted, and the direction coefficient and far away factor are introduced to control the velocity and direction of the particle far away from the worst solution, so that the particle moves away from the worst solution while moving to the optimal solution. Based on the improved Particle Swarm Optimization algorithm, an airborne multi-sensor task allocation method is proposed using maximum detection probability as objective function, and the algorithm is simulated. The simulation results show that this algorithm can effectively allocate tasks and improve allocation effects.

2014 ◽  
Vol 599-601 ◽  
pp. 1453-1456
Author(s):  
Ju Wang ◽  
Yin Liu ◽  
Wei Juan Zhang ◽  
Kun Li

The reconstruction algorithm has a hot research in compressed sensing. Matching pursuit algorithm has a huge computational task, when particle swarm optimization has been put forth to find the best atom, but it due to the easy convergence to local minima, so the paper proposed a algorithm ,which based on improved particle swarm optimization. The algorithm referred above combines K-mean and particle swarm optimization algorithm. The algorithm not only effectively prevents the premature convergence, but also improves the K-mean’s local. These findings indicated that the algorithm overcomes premature convergence of particle swarm optimization, and improves the quality of image reconstruction.


Sign in / Sign up

Export Citation Format

Share Document