fractional order pid
Recently Published Documents


TOTAL DOCUMENTS

719
(FIVE YEARS 310)

H-INDEX

31
(FIVE YEARS 8)

2022 ◽  
Vol 6 (1) ◽  
pp. 37
Author(s):  
Cristina I. Muresan ◽  
Isabela Birs ◽  
Clara Ionescu ◽  
Eva H. Dulf ◽  
Robin De De Keyser

The scientific community has recently seen a fast-growing number of publications tackling the topic of fractional-order controllers in general, with a focus on the fractional order PID. Several versions of this controller have been proposed, including different tuning methods and implementation possibilities. Quite a few recent papers discuss the practical use of such controllers. However, the industrial acceptance of these controllers is still far from being reached. Autotuning methods for such fractional order PIDs could possibly make them more appealing to industrial applications, as well. In this paper, the current autotuning methods for fractional order PIDs are reviewed. The focus is on the most recent findings. A comparison between several autotuning approaches is considered for various types of processes. Numerical examples are given to highlight the practicality of the methods that could be extended to simple industrial processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bingyu Li ◽  
Jining Guo ◽  
Ying Fu

Induction heating systems are characterized by model uncertainty, nonlinearity, and external disturbances, and the control accuracy of the system directly affects the performance of the heated workpiece. In order to improve the temperature control accuracy and anti-interference performance of induction heating systems, this paper proposes a composite control strategy combining fractional-order PID (FOPID) and active disturbance rejection control (ADRC). Meanwhile, for the problem of too many controller tuning parameters, an improved quantum behavior particle swarm optimization (QPSO) algorithm is used to transform the nine parameters to be tuned in fractional-order PID active disturbance rejection control (FOPID-ADRC) into a minimization value optimization problem for solving. The simulation results show that the FOPID-ADRC controller improves the anti-interference capability and control accuracy of the temperature control system, and the improved QPSO algorithm has better global search capability and local optimal adaptation value.


Sign in / Sign up

Export Citation Format

Share Document