scholarly journals A posteriori snapshot location for POD in optimal control of linear parabolic equations

2018 ◽  
Vol 52 (5) ◽  
pp. 1847-1873 ◽  
Author(s):  
Alessandro Alla ◽  
Carmen Grässle ◽  
Michael Hinze

In this paper we study the approximation of an optimal control problem for linear parabolic PDEs with model order reduction based on Proper Orthogonal Decomposition (POD-MOR). POD-MOR is a Galerkin approach where the basis functions are obtained upon information contained in time snapshots of the parabolic PDE related to given input data. In the present work we show that for POD-MOR in optimal control of parabolic equations it is important to have knowledge about the controlled system at the right time instances. We propose to determine the time instances (snapshot locations) by an a posteriori error control concept. The proposed method is based on a reformulation of the optimality system of the underlying optimal control problem as a second order in time and fourth order in space elliptic system which is approximated by a space-time finite element method. Finally, we present numerical tests to illustrate our approach and show the effectiveness of the method in comparison to existing approaches.

Author(s):  
Carmen Gräßle ◽  
Michael Hinze ◽  
Alessandro Alla

We present the approximation of an optimal control problem for linear parabolic PDEs. The method is based on a model reduction technique using Proper Orthogonal Decomposition (POD-MOR). POD-MOR is a Galerkin approach where the basis functions are obtained upon information contained in time snapshots of the parabolic PDE related to given input data. We show that it is important to have knowledge about the controlled system at the right time instances. For the determination of the time instances (snapshot locations) we propose an a-posteriori error control which is based on a reformulation of the optimality system as a second order in time and fourth order in space elliptic system which is approximated by a space-time finite element method. Finally, we present numerical tests to illustrate our approach and to show the effectiveness of the method in comparison to existing approaches.


Games ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Alexander Arguchintsev ◽  
Vasilisa Poplevko

This paper deals with an optimal control problem for a linear system of first-order hyperbolic equations with a function on the right-hand side determined from controlled bilinear ordinary differential equations. These ordinary differential equations are linear with respect to state functions with controlled coefficients. Such problems arise in the simulation of some processes of chemical technology and population dynamics. Normally, general optimal control methods are used for these problems because of bilinear ordinary differential equations. In this paper, the problem is reduced to an optimal control problem for a system of ordinary differential equations. The reduction is based on non-classic exact increment formulas for the cost-functional. This treatment allows to use a number of efficient optimal control methods for the problem. An example illustrates the approach.


2018 ◽  
Vol 52 (5) ◽  
pp. 1617-1650 ◽  
Author(s):  
Alejandro Allendes ◽  
Enrique Otárola ◽  
Richard Rankin ◽  
Abner J. Salgado

We propose and analyze a reliable and efficienta posteriorierror estimator for a control-constrained linear-quadratic optimal control problem involving Dirac measures; the control variable corresponds to the amplitude of forces modeled as point sources. The proposeda posteriorierror estimator is defined as the sum of two contributions, which are associated with the state and adjoint equations. The estimator associated with the state equation is based on Muckenhoupt weighted Sobolev spaces, while the one associated with the adjoint is in the maximum norm and allows for unbounded right hand sides. The analysis is valid for two and three-dimensional domains. On the basis of the deviseda posteriorierror estimator, we design a simple adaptive strategy that yields optimal rates of convergence for the numerical examples that we perform.


Sign in / Sign up

Export Citation Format

Share Document