scholarly journals Fatigue damage accumulation and lifetime prediction of defective C35 steel subjected to block loading

2014 ◽  
Vol 12 ◽  
pp. 04023
Author(s):  
Haifa Sallem ◽  
Yves Nadot ◽  
Chokri Bouraoui
Author(s):  
He´lder F. S. G. Pereira ◽  
Abi´lio M. P. De Jesus ◽  
Anto´nio A. Fernandes ◽  
Alfredo S. Ribeiro

Current fatigue analyses of metallic structures undergoing variable amplitude loading, including pressure vessels, are mostly based on linear cumulative damage concepts, as proposed by Palmgren and Miner. This type of analysis neglects any sequential effects of the loading history. Several studies have shown that linear cumulative damage theories can produce inconsistent fatigue life predictions. In this paper, both fatigue damage accumulation and cyclic elastoplastic behaviors of the P355NL1 steel are characterized, using block loading fatigue tests. The loading is composed by blocks of constant strain-controlled amplitudes, applied according to two and multiple alternate blocks sequences. Also, loading composed by blocks of variable strain-controlled amplitudes are investigated. The block loading illustrates that fatigue damage evolves nonlinearly with the number of load cycles, as a function of the block strain amplitudes. These observations suggest a nonlinear damage accumulation rule with load sequential effects for the P355NL1 steel. However, the damage accumulation nonlinearity and load sequential effects are more evident for the two block loading rather than for multiple alternate block sequences, which suggests that the linear Palmgren-Miner’s rule tend to produce better results for more irregular loading histories. Some phenomenological interpretations for the observed trends are discussed under a fracture mechanics framework.


2005 ◽  
Vol 27 (10-12) ◽  
pp. 1347-1353 ◽  
Author(s):  
S GARCIA ◽  
A AMROUCHE ◽  
G MESMACQUE ◽  
X DECOOPMAN ◽  
C RUBIO

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Hélder F. S. G. Pereira ◽  
Abílio M. P. De Jesus ◽  
Alfredo S. Ribeiro ◽  
António A. Fernandes

Current fatigue analyses of metallic structures undergoing variable amplitude loading, including pressure vessels, are mostly based on linear cumulative damage concepts, as proposed by Palmgren and Miner. This type of analysis neglects any sequential effects of the loading history. Several studies have shown that linear cumulative damage theories can produce inconsistent fatigue life predictions. In this paper, both fatigue damage accumulation and cyclic elastoplastic behaviors of the P355NL1 steel are characterized using block loading fatigue tests. The loading is composed of blocks of constant strain-controlled amplitudes, applied according to two and multiple alternate blocks sequences. Also, loading composed by blocks of variable strain-controlled amplitudes are investigated. The block loading illustrates that fatigue damage evolves nonlinearly with the number of load cycles, as a function of the block strain amplitudes. These observations suggest a nonlinear damage accumulation rule with load sequential effects for the P355NL1 steel. However, the damage accumulation nonlinearity and load sequential effects are more evident for the two block loading rather than for multiple alternate block sequences, which suggests that the linear Palmgren–Miner rule tends to produce better results for more irregular loading histories. Some phenomenological interpretations for the observed trends are discussed under a fracture mechanics framework.


2004 ◽  
Vol 46 (6) ◽  
pp. 309-313
Author(s):  
Yutaka Iino ◽  
Hideo Yano

Sign in / Sign up

Export Citation Format

Share Document