stainless steels
Recently Published Documents





2022 ◽  
Vol 104 ◽  
pp. 52-58
M.C. Niu ◽  
K. Yang ◽  
J.H. Luan ◽  
W. Wang ◽  
Z.B. Jiao

2022 ◽  
Madalina-Simona Baltatu

The book presents the characterization and classification of metallic biomaterials; with focus on titanium-based alloys, cobalt-based alloys, stainless steels and biodegradable alloys. Emphasis is placed on the synthesis, assessment of properties and medical applications such as multifunctional implants. The book references 423 original resources and includes their direct web link for in-depth reading.

2022 ◽  
Temitope Olumide Olugbade

Stainless steels are widely recognized and find applications in many engineering industries and companies due to their excellent properties including high resistance to corrosion as a result of their minimum 10.5% chromium content, exceptional strength and durability, temperature resistance, high recyclability, and easy formability. In the present book chapter, the basic concepts of stainless steel including its applications, classifications, and corrosion properties will first be discussed. Thereafter, their corrosion behaviour will then be explained. The various methods by which the corrosion resistance behaviour can be significantly improved including surface treatments such as coatings/electrodepositions, alloying, mechanical treatment, and others will be discussed in detail.

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 86
Niklas Sommer ◽  
Clementine Warres ◽  
Tarek Lutz ◽  
Martin Kahlmeyer ◽  
Stefan Böhm

The intergranular corrosion susceptibility of ferritic stainless-steel weldments is strongly dependent on chromium carbide precipitation phenomena. Hence, stabilization is widely used to mitigate the aforementioned precipitation. In contrast, stabilization has proved ineffective to fully prevent intergranular corrosion due to segregation of unreacted chromium during solid-state heat-treatments. To analyze the precipitation behavior of 17 wt.-% chromium ferritic stainless steels during laser welding, sheets of unstabilized and titanium-stabilized ferritic stainless steels were welded in a butt joint configuration and characterized with special consideration of precipitation behavior by means of transmission electron microscopy. While unstabilized ferritic stainless steels exhibit pronounced chromium precipitate formation at grain boundaries, titanium-stabilization leads to titanium precipitates without adjacent chromium segregation. However, corrosion tests reveal three distinctive corrosion mechanisms within the investigated ferritic stainless steels based on their inherent precipitation behaviors. In light of the precipitation formation, it is evident that immersion in sulfuric acid media leads to the dissolution of either grain boundaries or the grain boundary vicinity. As a result, the residual mechanical strength of the joint is substantially degraded.

Zhao-Jie Wang ◽  
Fan-jing Yin ◽  
Yong-Wang Li ◽  
Guang-Ming Xie ◽  
Guo-Dong Wang ◽  

2022 ◽  
Vol 25 ◽  
Marcel Freitas de Souza ◽  
Juan Manuel Pardal ◽  
Hugo Ribeiro da Igreja ◽  
Linilson Rodrigues Padovese ◽  
Maria Cindra Fonseca

Sign in / Sign up

Export Citation Format

Share Document