scholarly journals Micromechanical approaches to understand dwell fatigue: from titanium a-b microstructures to disc thermal alleviation

2020 ◽  
Vol 321 ◽  
pp. 04004
Author(s):  
Zebang Zheng ◽  
Zhen Zhang ◽  
Ben Britton ◽  
Fionn Dunne

Micro-pillar tests on α and α-β colony Ti alloys in combination with crystal plasticity finite element analysis has enabled the extraction of a and b phase slip strength and rate sensitivity properties. Faithfully representative α-β microstructure polycrystal plasticity models have then been established in order to investigate dwell fatigue in isothermal rig test behaviour and anisothermal thermomechanical flight loading conditions. The role of thermal alleviation in diminishing dwell sensitivity has been demonstrated.

2020 ◽  
Vol 29 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Vani J. Sabesan ◽  
Diego J.L. Lima ◽  
Yang Yang ◽  
Matthew C. Stankard ◽  
Mauricio Drummond ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 148-156 ◽  
Author(s):  
M. Pinheiro ◽  
C. A. Dobson ◽  
D. Perry ◽  
M. J. Fagan

Objectives Legg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition. Methods Finite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP. Results The results support the hypothesis that vascular obstruction to the epiphysis may arise when there is delayed ossification and when articular cartilage has reduced stiffness under compression. Conclusion The findings support the theory of vascular occlusion as being important in the pathophysiology of Perthes disease. Cite this article: M. Pinheiro, C. A. Dobson, D. Perry, M. J. Fagan. New insights into the biomechanics of Legg-Calvé-Perthes’ disease: The Role of Epiphyseal Skeletal Immaturity in Vascular Obstruction. Bone Joint Res 2018;7:148–156. DOI: 10.1302/2046-3758.72.BJR-2017-0191.R1.


Sign in / Sign up

Export Citation Format

Share Document