lpso phase
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 60)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
pp. 131524
Author(s):  
Duofei Zheng ◽  
Qingchun Zhu ◽  
Xiaoqin Zeng ◽  
Yangxin Li

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7145
Author(s):  
Yuanke Fu ◽  
Liping Wang ◽  
Sicong Zhao ◽  
Yicheng Feng ◽  
Lei Wang

In the present paper, the Mg-11Gd-2Y-1Zn alloys with different Al addition were fabricated by the gravity permanent mold method. The effect of Al content on microstructure evolution and mechanical properties of as-cast Mg-11Gd-2Y-1Zn alloy was studied by metallographic microscope, scanning electron microscope, XRD and tensile testing. The experimental results showed that the microstructure of as-cast Mg-11Gd-2Y-1Zn alloy consisted of α-Mg phase and island-shaped Mg3 (RE, Zn) phase. When Al element was added, Al2RE phase and lamellar Mg12REZn (LPSO) phase were formed in the Mg-11Gd-2Y-1Zn alloy. With increasing Al content, LPSO phase and Mg3 (RE, Zn) phase gradually decreased, while Al2RE phase gradually increased. There were only α-Mg and Al2RE phases in the Mg-11Gd-2Y-1Zn-5Al alloy. With the increase of Al content, the grain size decreased firstly and then increased. When the Al content was 1 wt.%, the grain size of the alloy was the minimum value (28.9 μm). The ultimate tensile strength and elongation increased firstly and then decreased with increasing Al addition. And the fracture mode changed from intergranular fracture to transgranular fracture with increasing addition. When Al addition was 1 wt.%, the maximum ultimate tensile strength reached 225.6 MPa, and the elongation was 7.8%. When the content of Al element was 3 wt.%, the maximum elongation reached 10.2% and the ultimate tensile strength was 207.7 MPa.


2021 ◽  
Vol 138 ◽  
pp. 107321
Author(s):  
Klaudia Fekete ◽  
Gergely Farkas ◽  
Daria Drozdenko ◽  
Domonkos Tolnai ◽  
Andreas Stark ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5758
Author(s):  
Yunfang Liu ◽  
Yaqin Yang ◽  
Ming Yi ◽  
Jianmin Yu ◽  
Baocheng Li ◽  
...  

There is a new long-period stacking ordered structure in Mg–RE–Zn magnesium alloys, namely the LPSO phase, which can effectively improve the yield strength, elongation, and corrosion resistance of Mg alloys. According to different types of Mg–RE–Zn alloy systems, two transformation modes are involved in the heat treatment transformation process. The first is the alloy without LPSO phase in the as-cast alloy, and the MgxRE phase changes to 14H-LPSO phase. The second is the alloy containing LPSO phase in the as-cast state, and the 14H-LPSO phase is obtained by the transformations of 6H, 18R, and 24R. The effects of different solution parameters on the second phase of Mg–9Gd–2Y–2Zn–0.5Zr alloy were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The precipitation mechanism of 14H-LPSO phase during solution treatment was further clarified. At a solution time of 13 h, the grain size increased rapidly initially and then decreased slightly with increasing solution temperature. The analysis of the volume fraction of the second phase and lattice constant showed that Gd and Y elements in the alloy precipitated from the matrix and formed 14H-LPSO phase after solution treatment at 490 °C for 13 h. At this time, the hardness of the alloy reached the maximum of 74.6 HV. After solution treatment at 500 °C for 13 h, the solid solution degree of the alloy increases, and the grain size and hardness of the alloy remain basically unchanged.


2021 ◽  
pp. 130367
Author(s):  
Chen Su ◽  
Jingfeng Wang ◽  
Linjie Zeng ◽  
Hao Hu ◽  
Shijie Liu

2021 ◽  
pp. 111348
Author(s):  
Hidetoshi Somekawa ◽  
Daisuke Ando ◽  
Koji Hagihara ◽  
Michiaki Yamasaki ◽  
Yoshihito Kawamura
Keyword(s):  

Author(s):  
Guoqiang Wang ◽  
Zhongliang Xiao ◽  
Zhen Yang ◽  
Pengzhan Liu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document