scholarly journals New error bounds for Laplace approximation via Stein's method

Author(s):  
Robert Gaunt

We use Stein's method to obtain explicit bounds on the rate of convergence for the Laplace approximation of two different sums of independent random variables; one being a random sum of mean zero random variables and the other being a deterministic sum of mean zero random variables in which the normalisation sequence is random. We make technical advances to the framework of Pike and Ren \cite {pike} for Stein's method for Laplace approximation, which allows us to give bounds in the Kolmogorov and Wasserstein metrics. Under the additional assumption of vanishing third moments, we obtain faster convergence rates in smooth test function metrics. As part of the derivation of our bounds for the Laplace approximation for the deterministic sum, we obtain new bounds for the solution, and its first two derivatives, of the Rayleigh Stein equation.

1999 ◽  
Vol 8 (4) ◽  
pp. 335-346 ◽  
Author(s):  
PETER EICHELSBACHER ◽  
MAŁGORZATA ROOS

In the present paper we consider compound Poisson approximation by Stein's method for dissociated random variables. We present some applications to problems in system reliability. In particular, our examples have the structure of an incomplete U-statistics. We mainly apply techniques from Barbour and Utev, who gave new bounds for the solutions of the Stein equation in compound Poisson approximation in two recent papers.


2003 ◽  
Vol 2003 (17) ◽  
pp. 1055-1066
Author(s):  
K. Neammanee

We use Stein's method to find a bound for Cauchy approximation. The random variables which are considered need to be independent.


2005 ◽  
Vol 2005 (12) ◽  
pp. 1951-1967 ◽  
Author(s):  
K. Neammanee

In 2001, Chen and Shao gave the nonuniform estimation of the rate of convergence in Berry-Esseen theorem for independent random variables via Stein-Chen-Shao method. The aim of this paper is to obtain a constant in Chen-Shao theorem, where the random variables are not necessarily identically distributed and the existence of their third moments are not assumed. The bound is given in terms of truncated moments and the constant obtained is21.44for most values. We use a technique called Stein's method, in particular the Chen-Shao concentration inequality.


2007 ◽  
Vol 39 (3) ◽  
pp. 731-752 ◽  
Author(s):  
Martin Raič

Large deviation estimates are derived for sums of random variables with certain dependence structures, including finite population statistics and random graphs. The argument is based on Stein's method, but with a novel modification of Stein's equation inspired by the Cramér transform.


2012 ◽  
Vol 05 (01) ◽  
pp. 1250007
Author(s):  
Si-Li Niu ◽  
Jong-Il Baek

In this paper, we establish one general result on precise asymptotics of weighted sums for i.i.d. random variables. As a corollary, we have the results of Lanzinger and Stadtmüller [Refined Baum–Katz laws for weighted sums of iid random variables, Statist. Probab. Lett. 69 (2004) 357–368], Gut and Spătaru [Precise asymptotics in the law of the iterated logarithm, Ann. Probab. 28 (2000) 1870–1883; Precise asymptotics in the Baum–Katz and Davis laws of large numbers, J. Math. Anal. Appl. 248 (2000) 233–246], Gut and Steinebach [Convergence rates and precise asymptotics for renewal counting processes and some first passage times, Fields Inst. Comm. 44 (2004) 205–227] and Heyde [A supplement to the strong law of large numbers, J. Appl. Probab. 12 (1975) 173–175]. Meanwhile, we provide an answer for the possible conclusion pointed out by Lanzinger and Stadtmüller [Refined Baum–Katz laws for weighted sums of iid random variables, Statist. Probab. Lett. 69 (2004) 357–368].


1968 ◽  
Vol 64 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≥ 1} be a sequence of independent random variables and write Suppose that the random vairables Xn are uniformly bounded by a random variable X in the sense thatSet qn(x) = Pr(|Xn| > x) and q(x) = Pr(|Xn| > x). If qn ≤ q and E|X|r < ∞ with 0 < r < 2 then we have (see Loève(4), 242)where ak = 0, if 0 < r < 1, and = EXk if 1 ≤ r < 2 and ‘a.s.’ stands for almost sure convergence. the purpose of this paper is to study the rates of convergence ofto zero for arbitrary ε > 0. We shall extend to the present context, results of (3) where the case of identically distributed random variables was treated. The techniques used here are strongly related to those of (3).


1998 ◽  
Vol 30 (02) ◽  
pp. 449-475 ◽  
Author(s):  
A. D. Barbour ◽  
Sergey Utev

The accuracy of compound Poisson approximation can be estimated using Stein's method in terms of quantities similar to those which must be calculated for Poisson approximation. However, the solutions of the relevant Stein equation may, in general, grow exponentially fast with the mean number of ‘clumps’, leading to many applications in which the bounds are of little use. In this paper, we introduce a method for circumventing this difficulty. We establish good bounds for those solutions of the Stein equation which are needed to measure the accuracy of approximation with respect to Kolmogorov distance, but only in a restricted range of the argument. The restriction on the range is then compensated by a truncation argument. Examples are given to show that the method clearly outperforms its competitors, as soon as the mean number of clumps is even moderately large.


Sign in / Sign up

Export Citation Format

Share Document