bond percolation
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 32)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
Clara Stegehuis ◽  
Thomas Peron

Abstract In this paper, we investigate the effect of local structures on network processes. We investigate a random graph model that incorporates local clique structures, and thus deviates from the locally tree-like behavior of most standard random graph models. For the process of bond percolation, we derive analytical approximations for large percolation probabilities and the critical percolation value. Interestingly, these derivations show that when the average degree of a vertex is large, the influence of the deviations from the locally tree-like structure is small. In our simulations, this insensitivity to local clique structures often already kicks in for networks with average degrees as low as 6. Furthermore, we show that the different behavior of bond percolation on clustered networks compared to tree-like networks that was found in previous works can be almost completely attributed to differences in degree sequences rather than differences in clustering structures. We finally show that these results also extend to completely different types of dynamics, by deriving similar conclusions and simulations for the Kuramoto model on the same types of clustered and non-clustered networks.


2021 ◽  
Vol 58 (3) ◽  
pp. 677-692
Author(s):  
Gaoran Yu ◽  
John C. Wierman

AbstractWe reduce the upper bound for the bond percolation threshold of the cubic lattice from 0.447 792 to 0.347 297. The bound is obtained by a growth process approach which views the open cluster of a bond percolation model as a dynamic process. A three-dimensional dynamic process on the cubic lattice is constructed and then projected onto a carefully chosen plane to obtain a two-dimensional dynamic process on a triangular lattice. We compare the bond percolation models on the cubic lattice and their projections, and demonstrate that the bond percolation threshold of the cubic lattice is no greater than that of the triangular lattice. Applying the approach to the body-centered cubic lattice yields an upper bound of 0.292 893 for its bond percolation threshold.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Peter Mann ◽  
V. Anne Smith ◽  
John B. O. Mitchell ◽  
Christopher Jefferson ◽  
Simon Dobson

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
M. I. González-Flores ◽  
A. A. Torres ◽  
W. Lebrecht ◽  
A. J. Ramirez-Pastor

Sign in / Sign up

Export Citation Format

Share Document