A descent derivative-free algorithm for nonlinear monotone equations with convex constraints

2020 ◽  
Vol 54 (2) ◽  
pp. 489-505 ◽  
Author(s):  
Hassan Mohammad ◽  
Auwal Bala Abubakar

In this paper, we present a derivative-free algorithm for nonlinear monotone equations with convex constraints. The search direction is a product of a positive parameter and the negation of a residual vector. At each iteration step, the algorithm generates a descent direction independent from the line search used. Under appropriate assumptions, the global convergence of the algorithm is given. Numerical experiments show the algorithm has advantages over the recently proposed algorithms by Gao and He (Calcolo 55 (2018) 53) and Liu and Li (Comput. Math. App. 70 (2015) 2442–2453).

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 168 ◽  
Author(s):  
Zhifeng Dai ◽  
Huan Zhu

The goal of this paper is to extend the modified Hestenes-Stiefel method to solve large-scale nonlinear monotone equations. The method is presented by combining the hyperplane projection method (Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima, L. Qi (Eds.)Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers. 1998, 355-369) and the modified Hestenes-Stiefel method in Dai and Wen (Dai, Z.; Wen, F. Global convergence of a modified Hestenes-Stiefel nonlinear conjugate gradient method with Armijo line search. Numer Algor. 2012, 59, 79-93). In addition, we propose a new line search for the derivative-free method. Global convergence of the proposed method is established if the system of nonlinear equations are Lipschitz continuous and monotone. Preliminary numerical results are given to test the effectiveness of the proposed method.


Author(s):  
Mompati Koorapetse ◽  
P Kaelo ◽  
S Kooepile-Reikeletseng

In this paper, a new modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations is presented. The method is developed by combining a modified Perry's conjugate gradient method with the hyperplane projection technique. Global convergence and numerical results of the proposed method are established. Preliminary numerical results show that the proposed method is promising and efficient compared to some existing methods in the literature.


2021 ◽  
Vol 6 (8) ◽  
pp. 8792-8814
Author(s):  
Aliyu Muhammed Awwal ◽  
◽  
Poom Kumam ◽  
Kanokwan Sitthithakerngkiet ◽  
Abubakar Muhammad Bakoji ◽  
...  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Abdulkarim Hassan Ibrahim ◽  
Poom Kumam ◽  
Auwal Bala Abubakar ◽  
Jamilu Abubakar

AbstractIn recent times, various algorithms have been incorporated with the inertial extrapolation step to speed up the convergence of the sequence generated by these algorithms. As far as we know, very few results exist regarding algorithms of the inertial derivative-free projection method for solving convex constrained monotone nonlinear equations. In this article, the convergence analysis of a derivative-free iterative algorithm (Liu and Feng in Numer. Algorithms 82(1):245–262, 2019) with an inertial extrapolation step for solving large scale convex constrained monotone nonlinear equations is studied. The proposed method generates a sufficient descent direction at each iteration. Under some mild assumptions, the global convergence of the sequence generated by the proposed method is established. Furthermore, some experimental results are presented to support the theoretical analysis of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document