scholarly journals Green closed-loop supply chain network design: a novel bi-objective chance-constraint approach

2021 ◽  
Vol 55 (2) ◽  
pp. 811-840
Author(s):  
Amin Reza Kalantari Khalil Abad ◽  
Seyed Hamid Reza Pasandideh

In this paper, a novel chance-constrained programming model has been proposed for handling uncertainties in green closed loop supply chain network design. In addition to locating the facilities and establishing a flow between them, the model also determines the transportation mode between facilities. The objective functions are applied to minimize the expected value and variance of the total cost CO2 released is also controlled by providing a novel chance-constraint including a stochastic upper bound of emission capacity. To solve the mathematical model using the General Algebraic Modeling System (GAMS) software, four multi-objective decision-making (MODM) methods were applied. The proposed methodology was subjected to various numerical experiments. The solutions provided by different methods were compared in terms of the expected value of cost, variance of cost, and CPU time using Pareto-based analysis and optimality-based analysis. In Pareto-based analysis, a set of preferable solutions were presented using the Pareto front; then optimality-based optimization was chosen as the best method by using a Simple Additive Weighting (SAW) method. Experimental experiments and sensitivity analysis demonstrated that the performance of the goal attainment method was 13% and 24% better that of global criteria and goal programming methods, respectively.

2020 ◽  
Vol 12 (2) ◽  
pp. 544 ◽  
Author(s):  
Guanshuang Jiang ◽  
Qi Wang ◽  
Ke Wang ◽  
Qianyu Zhang ◽  
Jian Zhou

Increasing concerns for sustainable development have motivated the study of closed-loop supply chain network design from a multidimensional perspective. To cope with such issues, this paper presents a general closed-loop supply chain network comprising various recovery options and further formulates a multi-objective mixed-integer linear programming model considering enterprise profit and service level simultaneously. Within this model, market segmentation is also considered to meet real-world operating conditions. Moreover, an ε -constraint method and two interactive fuzzy approaches are applied to find a global optimum for this model together with the decisions on the numbers, locations, and capacities of the facilities, as well as the material flow through the network. Ultimately, numerical experiments are conducted to demonstrate the viability and effectiveness of both the proposed model and solution approaches.


2017 ◽  
Vol 4 (1) ◽  
pp. 1329886 ◽  
Author(s):  
Alireza Hamidieh ◽  
Bahman Naderi ◽  
Mohammad Mohammadi ◽  
Mohamadreza Fazli-Khalaf ◽  
Akiko Yoshise

Author(s):  
Nasrin Mohabbati-Kalejahi ◽  
Alexander Vinel

Hazardous materials (hazmat) storage and transportation pose threats to people’s safety and the environment, which creates a need for governments and local authorities to regulate such shipments. This paper proposes a novel mathematical model for what is termed the hazmat closed-loop supply chain network design problem. The model, which can be viewed as a way to combine several directions previously considered in the literature, includes two echelons in the forward direction (production and distribution centers), three echelons in the backward direction (collection, recovery, and disposal centers), and emergency response team positioning. The two objectives of minimizing the strategic, tactical, and operational costs as well as the risk exposure on road networks are considered in this model. Since the forward flow of hazmat is directly related to the reverse flow, and since hazmat accidents can occur at all stages of the lifecycle (storage, shipment, loading, and unloading, etc.), it is argued that such a unified framework is essential. A robust framework is also presented to hedge the optimization model in case of demand and return uncertainty. The performance of both models is evaluated based on a standard dataset from Albany, NY. Considering the trade-offs between cost and risk, the results demonstrate the design of efficient hazmat closed-loop supply chain networks where the risk exposure can be reduced significantly by employing the proposed models.


2021 ◽  
pp. 107191
Author(s):  
Subramanian Pazhani ◽  
Abraham Mendoza ◽  
Ramkumar Nambirajan ◽  
T.T. Narendran ◽  
K. Ganesh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document