With the development of technology, shared autonomous vehicles may become one of the main traffic modes in the future. Especially, shared autonomous vehicle reservation system, commuting, and other trips with fixed departure time mostly submit their travel requests in advance. Therefore, it is important to reasonably match shared autonomous vehicles and reservation demands. In this paper, reservation requests are divided into short-term and long-term requests by inputting requests in a more realistic way. An integer linear programming model considering operator scheduling cost and system service level is established. A detailed scheme considering rolling horizon continuity and ridesharing is used to improve the dispatching result. Based on traffic data in Delft, the Netherlands, 164 scenarios are tested in which the parking cost, fuel cost, ridesharing effect, service level, and network size are analyzed. The results show that a better relocation and ridesharing matching scheme can be obtained when the rolling horizon is small, while the overall effect is better when the rolling horizon is large. Moreover, the buffer time, distance, and travel time limit for vehicle relocation should be selected according to the request quantity and the calculation time requirement. The result can provide a suggestion for the dispatching of shared autonomous vehicle reservation system with ridesharing.