Von Willebrand Activity of Low Molecular Weight Human Factor VIII Increases by Binding to Gold Granules

1981 ◽  
Vol 45 (03) ◽  
pp. 242-246 ◽  
Author(s):  
Miha Furlan ◽  
Beat A Perret ◽  
Eugene A Beck

SummaryHuman factor VIII/von Willebrand protein is a population of multimers which vary in size but contain apparently identical subunits. Large-molecular-weight forms possess higher ristocetin cofactor/von Willebrand activity than the native smaller oligomers. Disulfide reduction of large factor VIII multimers results in progressively decreasing molecular size and a loss of ristocetin cofactor activity. Small molecular forms of factor VIII were adsorbed onto gold granules (average diameter 20-30 nm) and thereby increased their ristocetin cofactor activity. The amount of adsorbed material and the extent of activation were dependent on the pH of the colloid suspension. The maximum recovery of von Willebrand activity was observed at pH 4.75. Aggregation of fixed human platelets by factor VIII-coated gold particles was dependent on ristocetin concentration and was not competitively inhibited by unbound low-molecular-weight factor VIII. These results suggest that the subunits of the native small factor VIII species possess potential binding affinity for platelet receptors, which is manifested following formation of large factor VIII polymers. We conclude that an optimal size of remarkably high molecular weight is required for efficient aggregation of platelets by factor VIII as occurs during the primary phase of hemostasis.

Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 600-606 ◽  
Author(s):  
D Meyer ◽  
D Frommel ◽  
MJ Larrieu ◽  
TS Zimmerman

Abstract A previously healthy elderly man with mucocutaneous bleeding was found to have a benign monoclonal IgG gammapathy associated with criteria for severe von Willebrand disease (Factor VIII procoagulant activity, Factor-VIII-related antigen, and ristocetin cofactor activity, less than 10% of normal). Associated qualitative abnormalities of factor VIII/von Willebrand factor were demonstrated by radiocrossed immunoelectrophoresis and immunoradiometric assay. The late clinical onset and negative family history are in favor of an acquired form of vWD. The monoclonal gammapathy and abnormalities of factor VIII/von Willebrand factor have been stable over a 10-yr period. No inhibitor to Factor VIII procoagulant activity, ristocetin cofactor activity, or Factor-VIII-related antigen could be demonstrated. Following transfusion of cryoprecipitate (with a normal cross immunoelectrophoretic pattern), there was a rapid removal of the large forms of Factor.-VIII-related antigen, paralleled by a decay of ristocetin cofactor activity. The transfusion study of this patient with acquired von Willebrand disease type II (variant of von Willebrand disease) serves to emphasize the relationship between polydispersity of Factor VIII/von Willebrand Factor and functional heterogeneity.


1993 ◽  
Vol 70 (02) ◽  
pp. 351-356 ◽  
Author(s):  
W A Fricke ◽  
M A Lamb ◽  
S C Rastogi

SummaryA multilaboratory collaborative study was undertaken to assess the feasibility of using a plasma standard for expressing the results of assays for the von Willebrand factor content of von Willebrand factor concentrates and of factor VIII concentrates. Thirteen laboratories tested six concentrates for von Willebrand factor antigen, ristocetin cofactor activity, and multimer content using the World Health Organization plasma standard for factor VIII/von Willebrand factor, 87/718, as a standard. Only a few assays were invalid because of nonparallelism or nonlinearity. Significant interlaboratory and interassay differences were found for both von Willebrand factor antigen and ristocetin cofactor activity. There was generally good agreement between the laboratories with respect to the multimer content in the preparations. With respect to assay validity, a plasma standard could be suitable for assaying concentrated preparations of von Willebrand factor.


1981 ◽  
Author(s):  
S Eric Martin ◽  
Victor J Marder ◽  
Charles W Francis ◽  
Grant H Barlow

Human von Willebrand protein purified from cryoprecipitate was separated by gel elution and sucrose gradient ultracentrifugation into groups of polymers of different size, ranging from a molecular weight greater than 10 × 10-6 to a minimum of 2.4 × 10-6. After disulfide bond reduction, all polymers showed a major band of 208,000 molecular weight with about 1% of the protein having lower molecular weights of 197,000, 174,000 and 154,000. Major and minor moieties were recovered from immunoprecipitates obtained with monospecific anti-von Willebrand protein antibody. The ristocetin cofactor activity of the different polymers showed increasing specific activity with increasing molecular weight, whether measured relative to von Willebrand antigen value or content of the 208,000 molecular weight subunit chain. This difference in specific activity was particularly evident when comparing groups of molecular weight greater than 10 × 106 with those of molecular weight less than 5 × 106. There was no difference in the content of the minor reduced bands in each polymer, no difference in carbohydrate concentration or susceptibility to neuraminidase or galactose oxidase, and no difference in the pattern of tryptic degradation or function of the 116,000 molecular weight tryptic remnant that retains ristocetin cofactor activity. The disulfide bond organization of the larger polymers appears to differ from that of the smaller polymers inasmuch as partially reduced polymers obtained from the high specific activity group expressed more ristocetin cofactor activity than unreduced polymers of similar size present in the low specific activity group. Apparently, optimal interaction of the von Willebrand polymers with platelets is dictated not only by size but also by tertiary structure as shaped by disulfide bond organization.


Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 600-606
Author(s):  
D Meyer ◽  
D Frommel ◽  
MJ Larrieu ◽  
TS Zimmerman

A previously healthy elderly man with mucocutaneous bleeding was found to have a benign monoclonal IgG gammapathy associated with criteria for severe von Willebrand disease (Factor VIII procoagulant activity, Factor-VIII-related antigen, and ristocetin cofactor activity, less than 10% of normal). Associated qualitative abnormalities of factor VIII/von Willebrand factor were demonstrated by radiocrossed immunoelectrophoresis and immunoradiometric assay. The late clinical onset and negative family history are in favor of an acquired form of vWD. The monoclonal gammapathy and abnormalities of factor VIII/von Willebrand factor have been stable over a 10-yr period. No inhibitor to Factor VIII procoagulant activity, ristocetin cofactor activity, or Factor-VIII-related antigen could be demonstrated. Following transfusion of cryoprecipitate (with a normal cross immunoelectrophoretic pattern), there was a rapid removal of the large forms of Factor.-VIII-related antigen, paralleled by a decay of ristocetin cofactor activity. The transfusion study of this patient with acquired von Willebrand disease type II (variant of von Willebrand disease) serves to emphasize the relationship between polydispersity of Factor VIII/von Willebrand Factor and functional heterogeneity.


1997 ◽  
Vol 78 (02) ◽  
pp. 930-933 ◽  
Author(s):  
Ping Chang ◽  
D L Aronson

SummaryFive plasma preparations (11 lots) used in the treatment of von Willebrand’s disease (vWD) were evaluated. The collagen binding function of von Willebrand factor (vWF) containing preparations was compared with the ristocetin cofactor activity and the vWF antigen. Some preparations have higher ratio of functional activity (ristocetin cofactor and collagen binding) relative to the antigen than is found in normal plasma. The ristocetin cofactor activity and the collagen binding activity are tightly correlated (r = .95). Ultracentrifugal (UCF) analysis was used to compare the size distribution of vWf antigen, ristocetin cofactor and collagen binding activity. The sedimentation of all of the vWF parameters in the plasma products was slower than in plasma. In plasma products the ristocetin cofactor activity sediments the most rapidly, the collagen binding activity is slower and the antigen the slowest. The collagen/antigen ratio decreases with decreasing vWF size. Assignment of potency to vWF containing preparations utilizing the collagen binding activity may be more precise and as accurate as with the traditional ristocetin cofactor assay.


1997 ◽  
Vol 77 (02) ◽  
pp. 383-386 ◽  
Author(s):  
S Bellucci ◽  
J P Girma ◽  
M Lozano ◽  
D Meyer ◽  
J P Caen

SummaryThe Bernard-Soulier syndrome (BSS) is characterized by thrombocytopenia with giant platelets, a prolonged bleeding time with defective platelet adhesion to the subendothelium related to a defect in platelet membrane glycoprotein lb (GPIb) and a decreased prothrombin consumption. The mechanism of the latter abnormality remains unknown. In this study, we showed that this defect was corrected by the addition of purified human factor VIII (FVIII) to blood from four patients with BSS. The correction of prothrombin consumption was almost complete at concentrations between 1.5 and 3 IU/ml of FVIII procoagulant activity (VIII.'C) and partially abolished by a monoclonal antibody which neutralizes VIII:C. This correction was specific for FVIII and was not observed after addition of purified human FIX. It was obtained, in the same magnitude range, with FVIII complexed to von Willebrand factor (vWF) but not with free vWF. These data provide a new insight into the knowledge of the physiological interaction between the platelet membrane and the vWF-FVIII complex facilitating plasma coagulation activation and may lead to helpful therapeutic advances.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 823-831 ◽  
Author(s):  
VT Turitto ◽  
HJ Weiss ◽  
TS Zimmerman ◽  
II Sussman

The present studies were undertaken to determine whether factor VIII/von Willebrand factor (vWF) present in the vessel wall (in addition to that in plasma) may mediate the attachment of platelets to subendothelium. Subendothelium from everted rabbit aorta was exposed to human citrated blood flowing through an annular perfusion chamber at 40 mL/min (wall shear rate of 2,600 s-1 for five minutes). The vessel segments were incubated at 37 degrees C for one hour with various dilutions of either goat-anti-rabbit factor VIII/vWF serum or an IgG fraction prepared from the serum. Control segments were incubated with serum or IgG from a nonimmunized goat. Values of platelet contact (C), platelet adhesion (C + S), and thrombus formation (T) on the subendothelium were evaluated by a morphometric technique. Compared with vessels incubated with fractions prepared from a normal goat, a significant decrease in platelet adhesion (C + S), ranging from 45% to 65%, was observed on vessels incubated with various dilutions (1:5 to 1:50) of either serum or IgG fractions of goat-anti-rabbit factor VIII/vWF. A similar decrease in platelet adhesion was observed with vessels incubated with an F(ab')2 fragment against rabbit factor VIII/vWF prepared in the goat. When goat-anti-rabbit factor VIII/vWF IgG was added to rabbit blood (1:75 dilution), platelet adhesion was reduced to the same extent (65%) on normal rabbit vessels and on vessels pre-incubated with goat-anti-rabbit factor VIII/vWF. Immunofluorescence studies revealed the presence of rabbit factor VIII/vWF in the subendothelium of rabbit aorta and the continued binding of the goat-anti-factor VIII/vWF antibodies on subendothelium during the perfusion studies. No uptake of human factor VIII/vWF on the rabbit subendothelium was observed by this immunologic technique; human factor VIII/vWF was found to be entirely associated with the attached human platelets. Thus, factor VIII/vWF in the vessel wall may mediate platelet attachment to subendothelium in a manner similar to that of plasma factor VIII/vWF.


Sign in / Sign up

Export Citation Format

Share Document