scholarly journals Inconsistency of Karyotyping and Array Comparative Genomic Hybridization (aCGH) in a Mosaic Turner Syndrome Case

2020 ◽  
Vol 07 (04) ◽  
pp. 128-132
Author(s):  
Pinar Tulay ◽  
Mahmut Cerkez Ergoren ◽  
Ahmet Alkaya ◽  
Eyup Yayci ◽  
Sebnem Ozemri Sag ◽  
...  

Abstract Purpose Turner syndrome is a sex chromosomal aberration where majority of the patients have 45,X karyotype, while several patients are mosaic involving 45,X/46,XX; 46,X,i(Xq); and other variants. Cytogenetic analysis, karyotyping, is considered to be the “gold standard” to detect numerical and structural chromosomal abnormalities. In the recent years, alternative approaches, such as array comparative genomic hybridization (aCGH), have been widely used in genetic analysis to detect numerical abnormalities as well as unbalanced structural rearrangements. In this study, we report the use of karyotyping as well as aCGH in detecting a possible Turner syndrome variant. Methods An apparent 16-year-old female was clinically diagnosed as Turner syndrome with premature ovarian failure and short stature. The genetic diagnosis was performed for the patient and the parents by karyotyping analysis. aCGH was also performed for the patient. Main Findings Cytogenetic analysis of the patient was performed showing variant Turner syndrome (46,X,i(X)(q10)[26]/46,X,del(X)(q11.2)[11]/45,X[8]/46,XX[5]). The patient's aCGH result revealed that she has a deletion of 57,252kb of Xp22.33-p11.21 region; arr[GRCh37] Xp22.33-p11.21 (310,932–57,563–078)X1. Both aCGH and fluorescence in situ hybridization (FISH) results suggested that short stature Homeobox-containing (SHOX) gene, which is located on Xp22.33, was deleted, though FISH result indicated that this was in a mosaic pattern. Conclusion In the recent years, aCGH has become the preferred method in detecting numerical abnormalities and unbalanced chromosomal rearrangements. However, its use is hindered by its failure of detecting mosaicism, especially low-level partial mosaicism. Therefore, although the resolution of the aCGH is higher, the cytogenetic investigation is still the first in line to detect mosaicism.




2011 ◽  
Vol 18 (5) ◽  
Author(s):  
A. J. Dawson ◽  
R. Yanofsky ◽  
R. Vallente ◽  
S. Bal ◽  
I. Schroedter ◽  
...  


2018 ◽  
Vol 21 (2) ◽  
pp. 63-67
Author(s):  
S Zachaki ◽  
E Kouvidi ◽  
A Mitrakos ◽  
L Lazaros ◽  
A Pantou ◽  
...  

Abstract A novel de novo paracentric inversion of the long arm of chromosome 20 [inv(20)(q13.1q13.3)], detected by conventional karyotyping in a 14-year-old boy with mental retardation is described. Further investigation by array comparative genomic hybridization (aCGH) revealed that the 20q inversion was not accompanied by microdeletions/microduplications containing disease-associated genes near or at the breakpoints. Two deletions at chromosomal regions 11q14.3q21 and 20q12 of 4.5 and 1.97 Mb size, respectively, containing important online Mendelian inheritance in man (OMIM) genes, were detected. The 4.5Mb 11q14.3q21 microdeletion was contained within a region that is involved, in most of the reported cases, with the interstitial 11q deletion and may be related to the mental retardation and developmental delay present in the patient. On the other hand, the published data about the 20q12 microdeletion are very few and it is not possible to correlate this finding with our patient’s phenotype. This case report contributes to the description of a new chromosomal entity, not previously reported, and is therefore important, especially in prenatal diagnosis and management of patients. Array comparative genomic hybridization has proven a useful technique for detecting submicroscopic rearrangements and should be offered prenatally, especially in cases of de novo karyotypically balanced chromosomal inversions or translocations in order to unveil other unbalanced chromosomal abnormalities such as deletions and amplifications.



2010 ◽  
Vol 202 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Helena Urbánková ◽  
Milena Holzerová ◽  
Jana Balcárková ◽  
Ludĕk Raida ◽  
Vít Procházka ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document