Erratum: "Prestress Influence on Shear‐Lag Effect in Continuous Box‐Girder Bridge" (November, 1992, Vol. 118, No. 11)

1993 ◽  
Vol 119 (9) ◽  
pp. 2812-2812 ◽  
Author(s):  
Shih Toh Chang
2014 ◽  
Vol 644-650 ◽  
pp. 5054-5060
Author(s):  
Rui Juan Jiang ◽  
Yu Feng Xiao ◽  
Xiao Wei Yi ◽  
Qi Ming Wu ◽  
Wei Ming Gai

There are few studies about the shear lag effect and the effective flange width of the PC (Prestressed Concrete) box girder bridge with corrugated steel webs throughout the world in current time. In the present paper, based on the three-dimensional finite element analysis for a long-span continuous PC box girder bridge with corrugated steel webs and the corresponding conventional box girder bridge with concrete webs, a comparative study on the shear lag effect under vertical loads are carryied out together with the analyslis on the coefficient of the effective flange width. The results show that in the PC box girder with corrugated steel webs, the transverse distributions of longitudinal normal stress on the section of the slabs are obviousely non-uniform and they are different with those in the conventional PC box girder with concrete webs. And moreover, the shear lag effects in top slab of the PC box girder with corrugated steel webs are almost less obvious than those of the conventional PC box girder with concrete webs. However, the shear lag effects in bottom slab of the PC box girder with corrugated steel webs are almost similar to those of the conventional PC box girder with concrete webs, no matter what kind of vertical bending moment the cross section is subjected to


2014 ◽  
Vol 638-640 ◽  
pp. 1092-1098 ◽  
Author(s):  
Rui Juan Jiang ◽  
Qi Ming Wu ◽  
Yu Feng Xiao ◽  
Xiao Wei Yi ◽  
Wei Ming Gai

In the present paper, based on the three-dimensional finite element analysis for a three-span continuous PC box girder bridge with corrugated steel webs and the corresponding conventional box girder bridge with concrete webs, a comparative study on the shear lag effect under self-weight is carryied out together with the analyslis on the coefficient of the effective flange width. The results show that At the sections in the negative bending moment near the intermediate piers, the shear lag effect in the bridge with corrugated steel webs is more obvious than that in the bridge with concrete webs by 8%; and the corresponding effective flange width coefficient in the bridge with corrugated steel webs is even smaller than 0.9, so the shear lag effect at these sections should be considered in the design of this type of bridges. At the mid-span section of the middle span of a three-span continuous bridge either with corrugated steel webs or concrete webs, the shear lag effect can be omitted since the corresponding effective flange width coefficient there is close to 1.0.


2020 ◽  
Vol 10 (12) ◽  
pp. 4346
Author(s):  
Yuntai Zhang ◽  
Lizhong Jiang ◽  
Wangbao Zhou ◽  
Yulin Feng

This study proposed a dynamic characteristic analytical method (ANM) of a composite box girder bridge with corrugated steel web (CBGCSW) by completely considering the impact of shear lag effect and accordion effect of corrugated steel webs. Based on energy principles and variational principles, a vibration differential equation and the natural boundary conditions of a CBGCSW were developed. The analytical calculation formula for solving the vibration differential equation was then obtained. The results calculated using the ANM agreed well with previous experimental results, which validated the correctness of ANM. To demonstrate the superiority of the ANM, the vibration frequencies of several abstract CBGCSWs with varying ratios of span–width, obtained using the elementary beam theory (EBT) and the finite element method (FEM), were compared with those obtained by ANM. The efficacy of the ANM was verified and some meaningful conclusions were drawn which are helpful to relevant engineering design, such as the observation that a higher natural vibration frequency and smaller span–width ratio significantly magnified the shear lag effect of CBGCSW. The first five-order natural vibration frequencies of the CBGCSW were significantly lower than those of the composite box girder bridge with general steel web (CBGGSW), which indicates that the impact of the accordion effect is significant.


2012 ◽  
Vol 446-449 ◽  
pp. 3360-3364 ◽  
Author(s):  
Jin Li Qiao ◽  
Yong Jin ◽  
Wen Ling Tian ◽  
Fan Li

Based on the theory of thin-walled curved bar and considered the impact of initial curvature and prestress on the vertical flexure, the shear lag warp displacement function is replenished on the basic deformation of the curved box girder flange plate, for which the longitudinal dispersive function is utilized. According to the energy functional differential methods, the coupled bending tosion and shear lag of elasticity governing differential equations of curved prestressed box girder are deduced with different boundary conditions in considering prestress and initial curvature. The numerical solution is gained by Galerlein method. The calculated value of this article coincides well with the value of the experiment and finite-element method. It builds the theory analysing basic of shear lag effect of curved box girder bridge considering prestress and initial curvature.


Sign in / Sign up

Export Citation Format

Share Document