Closure to “Comprehensive Load Test on Prestressed Concrete Piles in Alluvial Clays and Marl in Savannah, Georgia” by Yong Tan and Guoming Lin

2015 ◽  
Vol 29 (1) ◽  
pp. 07014002 ◽  
Author(s):  
Yong Tan ◽  
Guoming Lin ◽  
Yufei Zhang ◽  
Xiang Li
2021 ◽  
pp. 21-30
Author(s):  
Aswin Lim ◽  
Varian Harwin Batistuta ◽  
Yiska Vivian Chritiansen Wijaya

Jakarta is faced with limited land resources due to its position as the capital city of Indonesia. Therefore, numerous high-rise buildings are being constructed to solve this problem and provide accommodations for a large number of Jakarta residents. Studies have shown that prestressed concrete piles (spun piles) are commonly used as the foundations of high-rise buildings in metropolitan cities across Indonesia, especially in the Northern Jakarta Coastal area, which is predominant with deep soft soils deposit. To further assess and verify the ultimate capacity of the pile, a static loading test was conducted. However, not all results from the field test produced ideal, accurate, precise, and reliable load-settlement curve (until failure) results. Therefore, this study aims to determine the soil properties for the analysis of prestressed concrete spun piles with a diameter of 600 mm in the Northern Jakarta coastal area based on the standard penetration test values (SPT-N). It is a case study of a well-documented static pile load test using the kentledge system. Back analyses were performed by the finite element method to obtain the extrapolated load-settlement curve. Furthermore, the effect of interface strength between pile and soil on the load-settlement curve was also investigated. The results showed that a reduction of interface strength leads to a smaller load–settlement curve. In addition, several geotechnical engineering parameters of soil, such as the undrained shear strength and effective young's modulus, were established using data from an in-situ soil site investigation and empirical correlations with SPT-N.


PCI Journal ◽  
2008 ◽  
Vol 53 (5) ◽  
pp. 40-53 ◽  
Author(s):  
Andrew Budek-Schmeisser ◽  
Gianmario Benzoni

PCI Journal ◽  
1962 ◽  
Vol 7 (5) ◽  
pp. 46-55
Author(s):  
N. H. E. Weller

2020 ◽  
Vol 47 (7) ◽  
pp. 856-864
Author(s):  
Guohui Cao ◽  
Wang Zhang ◽  
Jiaxing Hu ◽  
Xirong Peng

A long-term load test performed for 470 days on two two-span prestressed concrete (PC) continuous box girders is reported in this paper. Load types were selected as the test variates, and structural responses such as support reactions, deflections, and concrete strains were monitored. Simultaneously, affiliated experiments such as material strength, creep, and shrinkage tests were conducted to investigate the time-dependent performances of the materials. Data obtained from these tests showed that deflections, strains, and support reactions develop rapidly in the beginning and stabilize afterward; the reactions of mid- and end-supports decline and rise over time, respectively. Time-dependent patterns of deflections and support reactions were analyzed on the basis of an effective modulus method, and a practical calculation method for long-term deflections considering reaction redistributions was proposed. The effects of the service environment on the performance of PC girders were evaluated through an incremental analysis method.


2010 ◽  
Vol 163-167 ◽  
pp. 3551-3554
Author(s):  
Wei Peng ◽  
Zhi Xiang Zha

This template Based on cracks observation and finite element analysis of real engineering projects as well as bridge load test after reinforcement, causes and types of cracks in prestressed concrete box girder bridges and treating measurements are systematically studied. The results obtained from the calculation are presented to demonstrate the effect of sensitive factors, such as arrangement of longitudinal prestressed tendons, the magnitude of vertical prestressed force, temperature gradient, etc. The results show that the arrangement of longitudinal prestressed tendons and the magnitude of vertical prestressed force take key roles in cracks control of box girder webs. Lots of treating measurements are presented in accordance with different types of cracks, some of them are applied to a reinforcement engineering of a long span pretressed concrete continuous box girder bridge with cracks. Load test after reinforcement of the bridge demonstrates the reasonability of the treating measurements. Several design recommendations and construction measures about reinforcements and some sensitive factors mentioned above are proposed to control cracks.


1998 ◽  
Vol 2 (2) ◽  
pp. 173-195 ◽  
Author(s):  
W. D. L. FINN ◽  
R. H. LEDBETTER ◽  
R. L. FLEMING JR ◽  
T. W. FORREST ◽  
S. T. STACY

Sign in / Sign up

Export Citation Format

Share Document