interface strength
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 52)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
pp. 21-30
Author(s):  
Aswin Lim ◽  
Varian Harwin Batistuta ◽  
Yiska Vivian Chritiansen Wijaya

Jakarta is faced with limited land resources due to its position as the capital city of Indonesia. Therefore, numerous high-rise buildings are being constructed to solve this problem and provide accommodations for a large number of Jakarta residents. Studies have shown that prestressed concrete piles (spun piles) are commonly used as the foundations of high-rise buildings in metropolitan cities across Indonesia, especially in the Northern Jakarta Coastal area, which is predominant with deep soft soils deposit. To further assess and verify the ultimate capacity of the pile, a static loading test was conducted. However, not all results from the field test produced ideal, accurate, precise, and reliable load-settlement curve (until failure) results. Therefore, this study aims to determine the soil properties for the analysis of prestressed concrete spun piles with a diameter of 600 mm in the Northern Jakarta coastal area based on the standard penetration test values (SPT-N). It is a case study of a well-documented static pile load test using the kentledge system. Back analyses were performed by the finite element method to obtain the extrapolated load-settlement curve. Furthermore, the effect of interface strength between pile and soil on the load-settlement curve was also investigated. The results showed that a reduction of interface strength leads to a smaller load–settlement curve. In addition, several geotechnical engineering parameters of soil, such as the undrained shear strength and effective young's modulus, were established using data from an in-situ soil site investigation and empirical correlations with SPT-N.


2021 ◽  
Vol 14 (4) ◽  
pp. 477-482
Author(s):  
A. Ya. Gorenberg ◽  
Yu. A. Gorbatkina ◽  
V. G. Ivanova-Mumzhieva

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yuancheng Guo ◽  
Hao Wu ◽  
Chenglin Li

The ground vibration induced by pile driving affects the safety of the adjacent foundation pit. In this paper, the influence of pile-driving vibration on the soil strength and the nail-soil interface strength was studied, and the variation in the axial force and displacement of the soil nail under vibration was analyzed. The paper studied the effects under different vibration parameters on the soil strength and the nail-soil interface strength by using a vibration exciter and a nail pull-out model box. The results showed that the stronger the excitation force was and the higher the frequency was, the greater the attenuation of the soil strength and nail-soil interface strength was. On the contrary, the change of the internal friction angle of the soil was not obvious under the vibration. The nail-soil interface strength recovered when the vibration terminated. Decreases in c and τp led to an increase in the working length of the soil nail, a redistribution of the axial force, and an augmentation in the soil nail displacement.


Sign in / Sign up

Export Citation Format

Share Document