Field Evaluation of Polyester-Polymer Concrete Overlays on Bridge Decks Using Nondestructive Testing

Author(s):  
Robert J. Stevens ◽  
W. Spencer Guthrie ◽  
Jared S. Baxter ◽  
Brian A. Mazzeo
2019 ◽  
Vol 271 ◽  
pp. 07008
Author(s):  
William Toledo ◽  
Leticia Davila ◽  
Ahmed Al-Basha ◽  
Craig Newtson ◽  
Brad Weldon

This paper investigates the shrinkage and thermal effects of an ultra-high performance concrete (UHPC) mixture proposed for use as an overlay material for concrete bridge decks. In this study, early-age and longer-term shrinkage tests were performed on the locally produced UHPC. Thermal and shrinkage effects in normal strength concrete slabs overlaid with UHPC were also observed. Early-age shrinkage testing showed that approximately 55% of the strain occurred in the plastic state and may not contribute to bond stresses since the elastic modulus of the UHPC should be small at such early ages. Thickness of the substrate and amount of reinforcing steel were important factors for shrinkage in the slabs. The thickest slab experienced greater shrinkage than thinner slabs. Comparing this slab to a thinner slab with the same reinforcement indicated that reinforcement ratio is more important than the area of steel.


2018 ◽  
Vol 199 ◽  
pp. 01006 ◽  
Author(s):  
Lech Czarnecki

In less than one century concrete has become the most widely used construction material over the world. In less than half of century it is difficult to imagine a concrete totally without polymers. An implantation of polymers into concrete has taken effect in the form of Concrete Polymer Composite: C-PC. Since then (1975) the development of new concrete classes have been ongoing: C-PC = PMC + PCC + PI + PC, where PMC Polymer Modified Concrete (polymer cont. < 1% concrete mass); PCC Polymer Cement Concrete (> 1% concrete mass); PIC Polymer Impregnated Concrete (3-8% concrete mass), PC Polymer Concrete (8-12% concrete mass). Over the time the role of polymers have been extended and it is covered by polymer with additional preposition: polymers on concrete (overlays, coatings, waterproofing and bounding materials). All those polymer composites have been found irreplaceable application in concrete repairing industry. It is enough to say that in ten parts of the European Standards, EN 1504, the category “polymer” can be found 73 times, and that is a proof of the big significance of this material in the repairs and protection of concrete. Just for comparison reason, the term “cement” appears only 59 times in all parts of the EN 1504. Indeed, if repaired concrete is higher class then repairing material should content more polymer. The justification belongs to the adhesion, which is a fundamental challenge for concrete repair. But also short time to exploitation readiness and many others polymer composites advantages are taken into consideration. In the paper the question: how polymers enhance concrete repair performance? is discussed. The repair rules and methods versus polymer repair materials will be considered.


Sign in / Sign up

Export Citation Format

Share Document