polymer concrete
Recently Published Documents


TOTAL DOCUMENTS

983
(FIVE YEARS 282)

H-INDEX

36
(FIVE YEARS 6)

YMER Digital ◽  
2022 ◽  
Vol 21 (01) ◽  
pp. 192-205
Author(s):  
N Raghuraman ◽  

RC building elements of Reinforcing and upgrading is essential to extend its maintenance time, to overcome first structural limitations, and to control the consequence of building construction or design flaws. The RC constructions are reinforced by using the FRP-fiber reinforced polymer. This study utilizes the FRP in concrete structures for instance a Jute, coir, and Sisal is explored for its reliability in improving ductility and strength related structural performance. FRP structural response of the model parameters is studied by measuring the numerical and experimental terms, for instance, Ductility, Deflection, Tensile-Strength, and Compression-Strength. The quality of the sample specimens is tested by using the Fuzzy Neural Network (FNN) system. At this time, compared with existing jobs, the propounded Fuzzy Neural Network model accomplishes the best presentation regarding all boundaries for the fiberreinforced specimen over different stacked conditions


2022 ◽  
Vol 1048 ◽  
pp. 333-344
Author(s):  
K. Kumar Arun ◽  
M. Muthukannan ◽  
R. Raja Abinaya ◽  
A. Kumar Suresh

On the demand of reducing the global warming due to cement production which is used as main constituent in the production of concrete and minimizing the environmental impact caused by the waste and its disposal methods, this study was aimed. This study looked in to detail insight view on effective utilization of waste wood ash in the production of geopolymer concrete beams and columns to alternate the conventional reinforced concrete elements in construction industry. Waste wood ash is a waste by product produced in the nearby hotel and factories by burning the waste wood collected from timber industries and the ash are thrown in to land which creates a major environmental pollution. Geopolymer is a novel inorganic eco-friendly binding agent derived from alkaline solution that stimulates aluminosilicate source material (such as metakaolin, fly ash and GGBS). In this research, behaviour of beams in deflection, ductility factor, flexural strength and toughness index and columns in load carrying ability, stress strain behaviour and load-deflection behaviours were examined for three types of concretes (30% WWA – 70% Fly ash Geo-polymer concrete, Fly ash Geo-polymer concrete and Reinforced Cement Concrete). The results showed that inclusion of waste wood ash in geopolymer concrete helped in enhancing the load carrying capacity of beam and column by 42% and 28%. Further, the behaviour of structural elements in stiffness, ductility and toughness were also improved with the replacement of waste wood ash.


Author(s):  
Mostafa Hassani Niaki ◽  
Morteza Ghorbanzadeh Ahangari ◽  
Abdolhossein Fereidoon

This paper studies the mechanical properties of polymer concrete (PC) with three types of resin systems. First, the effect of 0.5 wt% up to 3 wt% basalt fiber on the mechanical properties of a quaternary epoxy-based PC is investigated experimentally, and the best weight percentage of basalt fiber is obtained. The results show that adding basalt fiber to PC caused the greatest enhancement within 10% in compressive strength, 10% in flexural strength, 35% in the splitting tensile strength, and 315% in impact strength. In the next step, the effect of nanoclay particles on the mechanical properties of basalt fiber-reinforced PC (BFRPC) is analyzed experimentally. Nanoclays increase the compressive strength up to 7%, flexural strength up to 27%, and impact strength up to 260% but decrease the tensile strength of the PC. Field-emission scanning electron microscopy (FESEM) analysis is performed to study the fracture surface and morphology of various concrete specimens. In the last step, we consider the effect of two other different resin systems, rigid polyurethane and rigid polyurethane foam on the mechanical properties of reinforced polymer concrete. A comparison study presents that the epoxy PC has a higher specific strength than the polyurethane and ultra-lightweight polyurethane foam PC.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Daniel Heras Murcia ◽  
Bekir Çomak ◽  
Eslam Soliman ◽  
Mahmoud M. Reda Taha

Textile reinforced concrete (TRC) has gained attention from the construction industry due to its light weight, high tensile strength, design flexibility, corrosion resistance, and remarkably long service life. Some structural applications that utilize TRC components include precast panels, structural repair, waterproofing elements, and façades. TRC is produced by incorporating textile fabrics into thin cementitious concrete panels. Premature debonding between the textile fabric and concrete due to improper cementitious matrix impregnation of the fibers was identified as a failure-governing mechanism. To overcome this performance limitation, in this study, a novel type of TRC is proposed by replacing the cement binder with a polymer resin to produce textile reinforced polymer concrete (TRPC). The new TRPC is created using a fine-graded aggregate, methyl methacrylate polymer resin, and basalt fiber textile fabric. Four different specimen configurations were manufactured by embedding 0, 1, 2, and 3 textile layers in concrete. Flexural performance was analyzed and compared with reference TRC specimens with similar compressive strength and reinforcement configurations. Furthermore, the crack pattern intensity was determined using an image processing technique to quantify the ductility of TRPC compared with conventional TRC. The new TRPC improved the moment capacity compared with TRC by 51%, 58%, 59%, and 158%, the deflection at peak load by 858%, 857%, 3264%, and 3803%, and the toughness by 1909%, 3844%, 2781%, and 4355% for 0, 1, 2, and 3 textile layers, respectively. TRPC showed significantly improved flexural capacity, superior ductility, and substantial plasticity compared with TRC.


2021 ◽  
Vol 21 (6) ◽  
pp. 209-215
Author(s):  
Yunje Lee ◽  
Jaehun Ahn ◽  
Yungtak Oh ◽  
Jaegeon Lee

The expansion of impervious areas owing to urbanization has adverse effects on water circulation. The application of low-impact development techniques to solve these problems is gaining popularity. Among others, Permeable pavements are the most widely employed low-impact development techniques. In this study, the dynamic modulus and tensile strength of pervious polymer concrete pavement were evaluated before and after freezing-thawing cycles. A tensile strength test, performed to check the soundness of the pervious polymer concrete, yielded a tensile strength and tensile strength ratio of 0.66 to 0.96 MPa, and 72 to 83%, respectively. The ultrasonic pulse velocity was measured to determine the dynamic modulus according to the freezing-thawing cycles. When 300 freezing-thawing cycles were performed, the dynamic modulus was analyzed to drop to a level of 77~85% of the initial value. The standards for freezing and thawing tests of pervious concrete have not yet been established. It is necessary to develop test standards for freezing-thawing resistance of pervious concretes considering climate change.


Author(s):  
Alexey Zhukov ◽  
Ekaterina Bobrova ◽  
Ivan Popov ◽  
Demissie Bekele Аrega

The article discusses ways to solve engineering problems in the study of technological processes using methods of system analysis. The essence of this method is to study the technology as a cybernetic system with an assessment of the" reactions” of this system to external influences formed during an active experiment. At the same time, optimization problems are solved analytically. Analytical optimization is based on two main principles. The regression equations obtained as a result of processing experimental data and testing statistical hypotheses are models that adequately describe real processes. Each of these equations is an algebraic function of several variables, to which methods of mathematical analysis are applicable, including the study of extremums of functions in partial derivatives. The next step is to develop a process algorithm and develop computer programs that allow you to select the composition and predict the properties of the product. As an engineering interpretation, it is possible to construct optimized nomograms that allow solving both direct and inverse problems; that is, predicting the result or selecting technological factors. The research methods described in the article are implemented in the study of technologies of cellular concrete, foam concrete, cement-polymer concrete and products made of mineral wool and foam glass. As an example, the article considers the optimization of the selection of the composition of fine-grained concrete reinforced with chopped glass fiber. The implementation of the developed method allowed us to determine the optimal value of the determining parameters, including the consumption of fiber and plasticizer, as well as to form a method for studying the properties of products.


Sign in / Sign up

Export Citation Format

Share Document