Coupled Effects of Static Creep, Cyclic Creep, and Damage on the Long-Term Performance of Prestressed Concrete Bridges: A Case Study Based on Rate-Type Formulation

CONCREEP 10 ◽  
2015 ◽  
Author(s):  
Qiang Yu ◽  
Teng Tong
1988 ◽  
Vol 15 (2) ◽  
pp. 190-198
Author(s):  
A. S. Beard ◽  
H. S. S. Tung

The Tsing Yi South Bridge was constructed in the early 1970s to provide access between Tsing Yi Island and the mainland at Kwai Chung. It has a prestressed concrete box girder superstructure consisting of five independent units which are monolithic with their piers and have expansion joints at the mid-span shear hinges and the abutments. During routine maintenance it was found that the superstructure cantilevers were deflecting excessively, and consequently a thorough inspection and appraisal were commissioned. These included a complete visual inspection, concrete core extraction, radiographic inspection of prestressing tendons and a programme of load testing. The bridge was also reanalyzed to check its long-term performance. Subsequently, a rehabilitation scheme was designed to recover part of the deflection. This involved the introduction of additional prestress near the box girder's top flange. Key words: prestressed concrete, structural assessment, creep, shrinkage, radiographic inspection, rehabilitation, external prestressing.


2009 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Eltayeb Hassan Onsa ◽  
Elsafi Mohamed Adam ◽  
Abdalla Khogali Ahmed ◽  
Mohamed Elmontasir Elbagir

Long-term deflections in balanced cantilever prestressed concrete bridges are reviewed. Burri and Shambat Bridges are taken as cases study to calculate long-term deflection. The two bridges were constructed at Khartoum State in the years 1972 and 1962, respectively. Due to the shortage of the basic data regarding the two bridges the AASHTO-LRFD is used to estimate and calculate the missing data in the two bridges. The Moment Area method is used to calculate the long-term deflections due to the dead load, live load and prestressing force. The calculated long-term deflections are compared with measured live load deflections obtained from load tests made by a Chinese contractor requested to evaluate the two bridges. Remarkable differences between theoretical and measured deflection at the end of cantilevers are encountered. The differences are probably due to the basic assumptions made in the formulations of deflection calculations. Some adjustments in the long-term deflection formulae are suggested to bring the calculated deflections in compatibility with measured ones.


2013 ◽  
Vol 95 (1) ◽  
pp. 64-75
Author(s):  
Rudolf Urban ◽  
Martin Štroner

Abstract Prestressed concrete bridges are very sensitive to the increase in long-term deflections. Reliable forecasts of deflections of bridge structures during construction and durability are crucial for achieving good durability. The main results of measurements are the changes of the deflection line of the bridge structures, which places special demands on the measurement procedure. Results from measurements are very useful for the improvement of mathematical prediction methods of behaviour of long span prestressed concrete structures.


Sign in / Sign up

Export Citation Format

Share Document