prediction methods
Recently Published Documents


TOTAL DOCUMENTS

1888
(FIVE YEARS 487)

H-INDEX

68
(FIVE YEARS 10)

2022 ◽  
Vol 16 (4) ◽  
pp. 1-20
Author(s):  
Junkun Yuan ◽  
Anpeng Wu ◽  
Kun Kuang ◽  
Bo Li ◽  
Runze Wu ◽  
...  

Instrumental variables (IVs), sources of treatment randomization that are conditionally independent of the outcome, play an important role in causal inference with unobserved confounders. However, the existing IV-based counterfactual prediction methods need well-predefined IVs, while it’s an art rather than science to find valid IVs in many real-world scenes. Moreover, the predefined hand-made IVs could be weak or erroneous by violating the conditions of valid IVs. These thorny facts hinder the application of the IV-based counterfactual prediction methods. In this article, we propose a novel Automatic Instrumental Variable decomposition (AutoIV) algorithm to automatically generate representations serving the role of IVs from observed variables (IV candidates). Specifically, we let the learned IV representations satisfy the relevance condition with the treatment and exclusion condition with the outcome via mutual information maximization and minimization constraints, respectively. We also learn confounder representations by encouraging them to be relevant to both the treatment and the outcome. The IV and confounder representations compete for the information with their constraints in an adversarial game, which allows us to get valid IV representations for IV-based counterfactual prediction. Extensive experiments demonstrate that our method generates valid IV representations for accurate IV-based counterfactual prediction.


Author(s):  
Suyambazhahan Sivalingam ◽  
Sunny Narayan ◽  
Sakthivel Rajamohan ◽  
Ivan Grujic ◽  
Nadica Stojanovic

The additive manufacturing (AM) of products involves various processes, such as raising the temperature of a work-piece (part) and substrate to the melting point and subsequent solidification, using a movable source of heat. The work piece is subjected to repeated cycles of heating and cooling. The main objective of this work was to present an overview of the various methods used for prediction of the residual stresses and how their contributions can be used to improve current additive manufacturing methods. These novel methods of manufacturing have several merits, compared to conventional methods. Some of these merits include the lower costs, higher precision and accuracy of manufacturing, faster processing time and more eco-friendly approaches to processes involved.


Author(s):  
Bornali Phukon ◽  
Akash Anil ◽  
Sanasam Ranbir Singh ◽  
Priyankoo Sarmah

WordNets built for low-resource languages, such as Assamese, often use the expansion methodology. This may result in missing lexical entries and missing synonymy relations. As the Assamese WordNet is also built using the expansion method, using the Hindi WordNet, it also has missing synonymy relations. As WordNets can be visualized as a network of unique words connected by synonymy relations, link prediction in complex network analysis is an effective way of predicting missing relations in a network. Hence, to predict the missing synonyms in the Assamese WordNet, link prediction methods were used in the current work that proved effective. It is also observed that for discovering missing relations in the Assamese WordNet, simple local proximity-based methods might be more effective as compared to global and complex supervised models using network embedding. Further, it is noticed that though a set of retrieved words are not synonyms per se, they are semantically related to the target word and may be categorized as semantic cohorts.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ming Liu ◽  
Lei Tan ◽  
Shuliang Cao

Pump as Turbine (PAT) is a technically and economically effective technology to utilize small/mini/micro/pico hydropower, especially in rural areas. There are two main subjects that influence the selection and application of PAT. On the one hand, manufacturers of pumps will not provide their characteristics under the turbine mode, which requires performance prediction methods. On the other hand, PAT efficiency is always slightly lower than that of pump, which requires further geometry optimization. This literature review summarized published research studies related to performance prediction and geometry optimization, aimed at guiding for selection and optimization of PAT. Currently, there exist four categories of performance prediction methods, namely, using BEP (Best Efficiency Point), using specific speed, loss modeling, and polynomial fitting. The using BEP and loss modeling methods are based on theoretical analysis, while using specific speed and polynomial fitting methods require statistical fitting. The prediction errors of published methods are within ±10% mostly. For geometry optimization, investigations mainly focus on impeller diameter and blade geometry. The influence of impeller trimming, blade rounding, blade wrap angle, blade profile, blade number, blade trailing edge position, and guide vane number has been studied. Among published methods, the blade rounding and forward-curved impellers are the most effective and feasible techniques.


Author(s):  
Maxime C. Cohen ◽  
Paul-Emile Gras ◽  
Arthur Pentecoste ◽  
Renyu Zhang

2022 ◽  
Vol 19 (3) ◽  
pp. 2800-2818
Author(s):  
Yan Wang ◽  
◽  
Guichen Lu ◽  
Jiang Du ◽  

<abstract><p>A Susceptible Infective Recovered (SIR) model is usually unable to mimic the actual epidemiological system exactly. The reasons for this inaccuracy include observation errors and model discrepancies due to assumptions and simplifications made by the SIR model. Hence, this work proposes calibration and prediction methods for the SIR model with a one-time reported number of infected cases. Given that the observation errors of the reported data are assumed to be heteroscedastic, we propose two predictors to predict the actual epidemiological system by modeling the model discrepancy through a Gaussian Process model. One is the calibrated SIR model, and the other one is the discrepancy-corrected predictor, which integrates the calibrated SIR model with the Gaussian Process predictor to solve the model discrepancy. A wild bootstrap method quantifies the two predictors' uncertainty, while two numerical studies assess the performance of the proposed method. The numerical results show that, the proposed predictors outperform the existing ones and the prediction accuracy of the discrepancy-corrected predictor is improved by at least $ 49.95\% $.</p></abstract>


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Zhenzhen He ◽  
Jiong Yu ◽  
Binglei Guo

With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets.


Sign in / Sign up

Export Citation Format

Share Document