asphalt mixes
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 152)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
pp. 231-249
Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman

Reclaimed asphalt pavement (RAP) has been used in asphalt mixes for several years in the United States. However, the interactions between the RAP binder and the virgin asphalt binder (VAB) need further investigations. Thus, the main objective of this study was to explore the rheological and chemical properties of extracted asphalt binders (EABs) from plant, field, and lab mixes. The plant mixes were collected from behind the paver, reheated to the compaction temperature, and compacted in the lab. The field mixes were collected as cores within two weeks after the end of the construction process. The lab mixes were fabricated in the lab using the same materials used in the plant and field mixes. The mixes contained high asphalt binder replacement percentages by RAP, which were greater than 30%. The EABs were treated as rolling thin film oven aged VABs (RTFO AVABs). The rheological properties of EABs and RTFO AVABs were analyzed using temperature sweep, frequency sweep, and multiple stress creep recovery tests. Chemical investigations of EABs and RTFO AVABs were carried out using Fourier transform infrared spectroscopy and thermogravimetric analysis. The EABs from plant or lab mixes showed higher stiffnesses than EABs from field mixes. This occurred because of the extra heating that was implemented for the plant mixes before the compaction in the lab, which caused more interactions between the RAP binder and VABs. The fabrication mechanism, mixing and short-term aging processes, used in lab mixes caused more interactions between RAP binder and VABs than in the field mixes.


2022 ◽  
Vol 961 (1) ◽  
pp. 012007
Author(s):  
Hasan H Joni ◽  
Yassir K Hadi

Abstract Due to high temperatures and increased traffic loads, most of Iraq’s streets suffer from permanent distortion problems, especially in streets where there are checkpoints, therefore, there are needs for reports and researches specialized in improving the pavement layers and increasing their resistance to temperatures and high traffic loads to reduce the rut depth. In this research, the VESYS 5W program was used to find a potential value for rut depth, where ordinary asphalt mixes and improved asphalt mixes were used using SBS polymer at 4% by weight of asphalt were it is evaluated according to different properties of these mixture and the resilient modulus one of these properties for it is importance. The results showed that when the value of the resilient modulus increases, the rut depth decreases, as the rut depth was reduced by 42.5% for the surface layer and 73% for the base layer


2022 ◽  
Vol 961 (1) ◽  
pp. 012029
Author(s):  
Hasan H Joni ◽  
Ali H Abed

Abstract One of the most significant factors for a good transportation system is the quality of the road pavement. As a result, many steps have been made to address the concerns of moisture damage to roadways, including increasing pavement quality and structural design approaches. In the last few years, there has been an increase in the attention of respective engineers to enhance the asphalt performance and provides various types of modifiers and substituting the virgin of asphaltic materials with recyclable products, to attain sustainable while reducing the price of modified pavement mixture. This article discusses the performance of modified asphalt mixes and the most commonly used recycled product, crumbs rubber, which is used as a modifier in asphaltic mixes at various contents (0, 2.5, 5, 7.5, 10, and 15% by asphalt weight), and investigates the impact of the addition rubber particles on a critical characteristic of asphalt mixtures, particularly regarding their resistance to damage of moisture. The results showed that modification of asphalt binder with CR increased Marshall’s Stability, and the inclusion of 10% of CR recorded the highest increment, increasing by 30.25%. According to increased TSR and IRS, the addition of CR improved the asphalt mixture’s moisture resistance. The addition of 7.5 % of CR resulted in the largest values of TSR and IRS, increasing by 8.8% and 12.9% respectively. Additionally, this study aims at understanding the benefits and drawbacks of recycling rubber tires and to build a concept for effectively incorporating waste materials into road pavement.


2022 ◽  
Vol 961 (1) ◽  
pp. 012041
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Yasir N. Kadhim ◽  
Wail Asim Mohammad Hussain ◽  
Ghazi Jalal Kashesh ◽  
Hayder Adnan Abdulhussein

Abstract Highway pavements are being exposed to increasing traffic loads and severe environmental conditions, resulting in reduced service life. A lot of studies have been conducted to modify asphalt by using different materials, especially to replace the ordinary filler. Because the behaviour of the hot asphalt mix is influenced by the fillers. The use of unusual materials as fillers in asphalt mixes can help to improve the mix’s characteristics. As a result, this study uses cow dung ash materials with various replacement ratios as fillers to investigate the mechanical properties of asphalt. In the asphalt mix, a replacement percentage of limestone (0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100%) was utilized. After that, various tests were performed such as Marshall stability, Marshall flow, voids in mineral aggregate, theoretical maximum specific gravity, air voids. The results revealed a significant improvement in the asphalt mix’s behaviour, as well as an increase in the replacement percentage. According to the findings, the 50% replacement rate has the highest Marshall stability which is equal to 11.11 with a 33.5% rise and the lowest flow of 3 with a 17.83% decrease when compared to the reference mix. As a result, cow dung ash can be used as a filler to modify the mechanical properties of the asphalt mix.


2022 ◽  
Vol 2153 (1) ◽  
pp. 012006
Author(s):  
Y W Yung-Vargas ◽  
A Rodríguez-Lizcano ◽  
C A Peña-Soto

Abstract The dense hot MDC-19 type asphalt mixes are considered, by the “Instituto Nacional de Vías” in Colombia, as continuous grading asphalt mixes (asphalt concrete). These constitute most of the surface course, in the structures of in-service pavements, being the object of study and research in different projects to ensure their durability. In the present investigation, unlike other investigations, the mechanical behavior under Marshall monotonic load was studied in the laboratory between MDC-19 dense type asphalt mixtures, comparing plant-produced and laboratory-produced asphalt mixtures. To carry out this process, samples of uncompacted asphalt mixtures were taken, produced in four fixed plants, with which Marshall-type briquettes were compacted. Likewise, samples of mineral aggregates and asphalt cement were obtained from the same plants, which constitute the mixtures raw material produced there. With these materials, briquettes with the same characteristics were mixed and compacted. Subsequently, the resistance under Marshall monotonic load was determined on the briquettes manufactured in plant and laboratory. The optimal asphalt cement content was compared between plant and laboratory- produced mixtures. An increase in Marshall Stability was found in the briquettes made with plant-produced mixtures, while these required a greater amount of asphalt cement for their production.


2021 ◽  
Author(s):  
Larissa Strömberg ◽  
Lev Khazanovich ◽  
Staffan Hintze

The need for correctly made comparisons of different pavement materials, regarding cost-efficiency to reduce the climate impact, is increasing, especially in connection with new types of climate-neutral materials, so that sub-optimizations and oblique competition do not arise. Both the Swedish and USA's authorities are beginning to demand the Environmental Product Declaration (EPDs) as a certificate of the pavements' environmental performances from the contractors. There are some methodological difficulties to use the EPDs for comparison of the environmental impacts between different asphalt mixes or between the asphalt- and concrete pavements. This paper has analyzed two new standards which propose to extend the declaration to several aspects of sustainability: technical, environmental and economic performance. In this article, we have investigated if these standards can be used to form a framework to create an extended sustainability declaration of road pavements allowed a multidisciplinary comparison of different materials based on technical performance, Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA).


Author(s):  
I. Holleran ◽  
D. J. Wilson ◽  
E. Masad ◽  
G. Holleran ◽  
E. Alrashydah
Keyword(s):  

Author(s):  
Ilker Boz ◽  
Jhony Habbouche ◽  
Stacey Diefenderfer ◽  
Yusuf Bilgic

The Virginia Department of Transportation (DOT) has taken initiatives to implement the Balanced Mix Design (BMD) method to assure the long-term service life of its pavement network from a mixture quality standpoint. As part of this initiative, the cracking tolerance (CT) index obtained from the indirect tensile (IDT) test at intermediate temperature in accordance with ASTM D8225-19 was selected for evaluating the cracking potential of dense-graded surface asphalt mixtures. This prompted the need to generate the precision estimates (repeatability and reproducibility) for the test method for proper implementation during quality measurement practices. Thus, this interlaboratory study was undertaken to determine the precision estimates of the CT index calculated from the IDT test and to develop the associated precision statements. In addition, fracture strain tolerance (FST) and indirect tensile strength were included. Two asphalt mixes with significantly different CT index values were designed for the evaluation. Forty-six pairs of five replicate sets of compacted specimens (one set for each mix) were sent to 41 participating laboratories to be tested at 25°C. The test results were checked for data quality. The effects of loading rate and manufacturers on the indices were also evaluated. The test results indicated that one third of the sets were not tested in full accordance with the ASTM standard, indicating a need for training. The results also indicated that the specified loading rate of 50 ± 2 mm/min in ASTM D8225-19 for the IDT test may need revision. Finally, the precision estimates and associated statements for the three indices were presented.


Sign in / Sign up

Export Citation Format

Share Document